supermachine-tobacco/01_dataset.ipynb
2022-07-17 14:27:23 +08:00

205 lines
3.6 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"source": [
"# 彩色图像读取"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 1,
"outputs": [],
"source": [
"import cv2\n",
"import numpy as np"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 2,
"outputs": [],
"source": [
"img_path = r\"data/tobacco/Image_2022_0716_1409_08_547-001482.bmp\"\n",
"label_path = r\"data/yangeng.bmp\""
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 3,
"outputs": [],
"source": [
"img = cv2.imread(img_path)\n",
"label = cv2.imread(label_path)\n",
"# img = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 4,
"outputs": [],
"source": [
"def trans_color(pixel: np.ndarray) -> int:\n",
" color_dict = {(0, 0, 255): 1, (255, 255, 255): 0, (255, 0, 0): 2}\n",
" if (pixel[0], pixel[1], pixel[2]) in color_dict.keys():\n",
" return color_dict[(pixel[0], pixel[1], pixel[2])]\n",
" else:\n",
" return -1"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 5,
"outputs": [],
"source": [
"img = img.reshape(1024*4096,3)\n",
"label = label.reshape(1024*4096,3)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 6,
"outputs": [],
"source": [
"x_list = []\n",
"for i in range(len(label)):\n",
" y = trans_color(label[i])\n",
" x_list.append(y)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 7,
"outputs": [],
"source": [
"y_list = []\n",
"for i in range(len(x_list)):\n",
" if (x_list[i] == 1):\n",
" y_list.append(img[i])"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 8,
"outputs": [],
"source": [
"y = np.array(y_list)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 10,
"outputs": [],
"source": [
"b = y[:,0]\n",
"g = y[:,1]\n",
"r = y[:,2]"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 9,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 9,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}