{ "cells": [ { "cell_type": "markdown", "source": [ "# 彩色图像读取" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 1, "outputs": [], "source": [ "import cv2\n", "import numpy as np" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 2, "outputs": [], "source": [ "img_path = r\"data/tobacco/Image_2022_0716_1409_08_547-001482.bmp\"\n", "label_path = r\"data/yangeng.bmp\"" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 3, "outputs": [], "source": [ "img = cv2.imread(img_path)\n", "label = cv2.imread(label_path)\n", "# img = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 4, "outputs": [], "source": [ "def trans_color(pixel: np.ndarray) -> int:\n", " color_dict = {(0, 0, 255): 1, (255, 255, 255): 0, (255, 0, 0): 2}\n", " if (pixel[0], pixel[1], pixel[2]) in color_dict.keys():\n", " return color_dict[(pixel[0], pixel[1], pixel[2])]\n", " else:\n", " return -1" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 5, "outputs": [], "source": [ "img = img.reshape(1024*4096,3)\n", "label = label.reshape(1024*4096,3)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 6, "outputs": [], "source": [ "x_list = []\n", "for i in range(len(label)):\n", " y = trans_color(label[i])\n", " x_list.append(y)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 7, "outputs": [], "source": [ "y_list = []\n", "for i in range(len(x_list)):\n", " if (x_list[i] == 1):\n", " y_list.append(img[i])" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 8, "outputs": [], "source": [ "y = np.array(y_list)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 10, "outputs": [], "source": [ "b = y[:,0]\n", "g = y[:,1]\n", "r = y[:,2]" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 9, "outputs": [], "source": [], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 9, "outputs": [], "source": [], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }