尝试加个功能

This commit is contained in:
duanmu 2023-03-26 15:51:44 +08:00
parent f79393100b
commit f593a67e76
2 changed files with 53 additions and 1 deletions

View File

@ -31,7 +31,7 @@ sys.path.append(os.getcwd())
from root_dir import ROOT_DIR
import utils
FEATURE_INDEX = [0,1,2,3,4,5]
FEATURE_INDEX = [0,1,2]
delete_columns = 10 # 已弃用
num_bins = 10
@ -367,6 +367,16 @@ class WoodClass(object):
data = self.extract_feature(train_img)
img_data.append(data)
img_data = np.array(img_data)
# 提取图像名称
img_name = [os.path.splitext(file)[0] for file in files]
# 提取每个图像名称中的数字
img_name = [name[3:] for name in img_name]
# 将图像名称个位数前补零
img_name = [name.zfill(2) for name in img_name]
# 打印图像名称
print('img_name:', img_name)
return img_data
def get_train_data(self, data_dir=None, plot_2d=False, plot_data_3d=False, save_data=False):
@ -386,6 +396,46 @@ class WoodClass(object):
light_label = 2 * np.ones(len(light_data)).T
y_data = np.hstack((dark_label, middle_label, light_label))
x_data = x_data[:, FEATURE_INDEX]
# 使用KMeans算法对图片数据进行聚类
kmeans = KMeans(n_clusters=3, random_state=0).fit(x_data)
z = kmeans.predict(x_data)
# 获取聚类后的数据
dark = x_data[kmeans.labels_ == 0]
middle = x_data[kmeans.labels_ == 1]
light = x_data[kmeans.labels_ == 2]
# 获取数据的均值
dark_mean = np.mean(dark, axis=0)
middle_mean = np.mean(middle, axis=0)
light_mean = np.mean(light, axis=0)
# 按照平均值从小到大排序
sorted_cluster_indices = np.argsort([dark_mean[0], middle_mean[0], light_mean[0]])
print('sorted_cluster_indices:', sorted_cluster_indices)
# 重新编号聚类标签
sorted_labels = np.zeros(len(kmeans.labels_), dtype=int)
for i, label in enumerate(kmeans.labels_):
sorted_labels[i] = sorted_cluster_indices[label]
# 更新kmeans.labels_
kmeans.labels_ = sorted_labels
print('kmeans.labels_:', kmeans.labels_)
# 获取更新聚类后的数据
dark_new = x_data[kmeans.labels_ == 0]
middle_new = x_data[kmeans.labels_ == 1]
light_new = x_data[kmeans.labels_ == 2]
# 获取更新数据的均值
dark_mean_new = np.mean(dark_new, axis=0)
middle_mean_new = np.mean(middle_new, axis=0)
light_mean_new = np.mean(light_new, axis=0)
# 打印每个聚类的平均值
print('Dark cluster mean:', dark_mean_new)
print('Middle cluster mean:', middle_mean_new)
print('Light cluster mean:', light_mean_new)
# plot_2d
plt.figure()
plt.scatter(x_data[:, 0], x_data[:, 1], c=z)
plt.show()
# 进行色彩数据校正
if self.isCorrect:
x_data = x_data / (self.correct_color + 1e-4)

View File

@ -45,6 +45,8 @@ def process_cmd(cmd: str, data: any, connected_sock: socket.socket, detector: Wo
settings.model_path = data
detector.load(path=settings.model_path)
response = simple_sock(connected_sock, cmd_type=cmd)
elif cmd == 'DT':
pass
else:
logging.error(f'错误指令,指令为{cmd}')
response = False