mirror of
https://github.com/NanjingForestryUniversity/supermachine-wood.git
synced 2025-11-08 10:13:53 +00:00
调整了数据的顺序,按照图片名称大小排序
This commit is contained in:
parent
a72c954b0a
commit
e4351408b4
25
classifer.py
25
classifer.py
@ -16,7 +16,6 @@ from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.metrics import accuracy_score, confusion_matrix
|
||||
|
||||
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
from scipy.stats import binom
|
||||
@ -152,8 +151,6 @@ class WoodClass(object):
|
||||
|
||||
# 显示结果报告
|
||||
|
||||
|
||||
|
||||
return int(pre_score * 100)
|
||||
|
||||
def calculate_p1(self, x, remove_background=False):
|
||||
@ -308,7 +305,6 @@ class WoodClass(object):
|
||||
# x = x[np.argsort(x[:, 0])]
|
||||
# x = x[-self.k:, :]
|
||||
|
||||
|
||||
hist, bins = np.histogram(x[:, 0], bins=num_bins)
|
||||
# hist = hist[1:]
|
||||
# bins = bins[1:]
|
||||
@ -318,7 +314,6 @@ class WoodClass(object):
|
||||
x = x[((x[:, 0] > bins[hist_number]) & (x[:, 0] < bins[hist_number + 1])) | (
|
||||
(x[:, 0] > bins[second_hist_number]) & (x[:, 0] < bins[second_hist_number + 1])), :]
|
||||
|
||||
|
||||
# hist, bins = np.histogram(x[:, 0], bins=9)
|
||||
# sorted_indices = np.argsort(hist)
|
||||
# hist_number = sorted_indices[-1]
|
||||
@ -326,8 +321,6 @@ class WoodClass(object):
|
||||
# x = x[((x[:, 0] > bins[hist_number]) & (x[:, 0] < bins[hist_number + 1])) | (
|
||||
# (x[:, 0] > bins[second_hist_number]) & (x[:, 0] < bins[second_hist_number + 1])), :]
|
||||
|
||||
|
||||
|
||||
if debug_mode:
|
||||
# self.log.log(x)
|
||||
self.log.log(x.shape)
|
||||
@ -531,7 +524,6 @@ class WoodClass(object):
|
||||
for i in range(labels.shape[0]):
|
||||
labels[i] = sorted_cluster_indices[labels[i]]
|
||||
|
||||
|
||||
if plot_2d:
|
||||
plt.figure()
|
||||
plt.scatter(x_data[:, 0], x_data[:, 1], c=labels)
|
||||
@ -539,7 +531,21 @@ class WoodClass(object):
|
||||
|
||||
return x_data, y_data, labels, img_names
|
||||
|
||||
|
||||
def data_adjustments(self, x_data, y_data, labels, img_names):
|
||||
'''
|
||||
数据调整
|
||||
:param x_data: 提取的特征
|
||||
:param y_data: 初始的类别
|
||||
:param labels: 聚类后的类别
|
||||
:param img_names: 文件名
|
||||
:return: 调整后的数据
|
||||
'''
|
||||
sorted_idx = sorted(range(len(img_names)), key=lambda x: int(img_names[x][3:-4]))
|
||||
x_data = x_data[sorted_idx, [0, 1, 2]]
|
||||
y_data = y_data[sorted_idx]
|
||||
labels = labels[sorted_idx]
|
||||
img_names = img_names[sorted_idx]
|
||||
return x_data, y_data, labels, img_names
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
@ -557,7 +563,6 @@ if __name__ == '__main__':
|
||||
|
||||
wood.get_kmeans_data(data_path, plot_2d=True)
|
||||
|
||||
|
||||
# 测试单张图片的预测,predict_mode=True表示导入本地的model, False为现场训练的
|
||||
pic = cv2.imread(r"data/318/dark/rgb89.png")
|
||||
start_time = time.time()
|
||||
|
||||
Loading…
Reference in New Issue
Block a user