mirror of
https://github.com/NanjingForestryUniversity/supermachine-wood.git
synced 2025-11-08 10:13:53 +00:00
调了一个还不错的参数
This commit is contained in:
parent
b37e064594
commit
af148ed971
10
classifer.py
10
classifer.py
@ -31,7 +31,7 @@ sys.path.append(os.getcwd())
|
|||||||
from root_dir import ROOT_DIR
|
from root_dir import ROOT_DIR
|
||||||
import utils
|
import utils
|
||||||
|
|
||||||
FEATURE_INDEX = [0,1,2]
|
FEATURE_INDEX = [1,2,3]
|
||||||
delete_columns = 10 # 已弃用
|
delete_columns = 10 # 已弃用
|
||||||
num_bins = 10
|
num_bins = 10
|
||||||
|
|
||||||
@ -60,10 +60,10 @@ class WoodClass(object):
|
|||||||
self._single_pick = single_pick_mode
|
self._single_pick = single_pick_mode
|
||||||
self.set_purity(self.pur)
|
self.set_purity(self.pur)
|
||||||
self.change_pick_mode(single_pick_mode)
|
self.change_pick_mode(single_pick_mode)
|
||||||
# self.model = LogisticRegression(C=1e5)
|
self.model = LogisticRegression(C=1e5)
|
||||||
self.left_correct = left_correct
|
self.left_correct = left_correct
|
||||||
# self.model = KNeighborsClassifier()
|
# self.model = KNeighborsClassifier()
|
||||||
self.model = DecisionTreeClassifier()
|
# self.model = DecisionTreeClassifier()
|
||||||
else:
|
else:
|
||||||
self.load(load_from)
|
self.load(load_from)
|
||||||
self.isCorrect = False
|
self.isCorrect = False
|
||||||
@ -122,7 +122,7 @@ class WoodClass(object):
|
|||||||
model_name = self.save(file_name)
|
model_name = self.save(file_name)
|
||||||
return model_name
|
return model_name
|
||||||
|
|
||||||
def fit(self, x, y, test_size=0.3):
|
def fit(self, x, y, test_size=0.7):
|
||||||
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=test_size, random_state=0)
|
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=test_size, random_state=0)
|
||||||
self.model.fit(x_train, y_train)
|
self.model.fit(x_train, y_train)
|
||||||
y_pred = self.model.predict(x_test)
|
y_pred = self.model.predict(x_test)
|
||||||
@ -317,7 +317,7 @@ class WoodClass(object):
|
|||||||
(x[:, 0] > bins[second_hist_number]) & (x[:, 0] < bins[second_hist_number + 1])), :]
|
(x[:, 0] > bins[second_hist_number]) & (x[:, 0] < bins[second_hist_number + 1])), :]
|
||||||
|
|
||||||
|
|
||||||
# hist, bins = np.histogram(x[:, 0], bins=5)
|
# hist, bins = np.histogram(x[:, 0], bins=9)
|
||||||
# sorted_indices = np.argsort(hist)
|
# sorted_indices = np.argsort(hist)
|
||||||
# hist_number = sorted_indices[-1]
|
# hist_number = sorted_indices[-1]
|
||||||
# second_hist_number = sorted_indices[-2]
|
# second_hist_number = sorted_indices[-2]
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user