From 8a7dfa87aecd772132c9a932ec4368edf098357d Mon Sep 17 00:00:00 2001 From: duanmu <774052669@qq.com> Date: Wed, 29 Mar 2023 14:36:16 +0800 Subject: [PATCH] =?UTF-8?q?fix:=20=E5=88=A0=E9=99=A4=E4=BA=86=E6=97=A0?= =?UTF-8?q?=E7=94=A8=E7=9A=84=E6=B3=A8=E9=87=8A?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- classifer.py | 39 --------------------------------------- 1 file changed, 39 deletions(-) diff --git a/classifer.py b/classifer.py index 27fbdaa..521a963 100644 --- a/classifer.py +++ b/classifer.py @@ -394,45 +394,6 @@ class WoodClass(object): # dark_name, middle_name, light_name三个list合并 img_name = dark_name + middle_name + light_name - # # 使用KMeans算法对图片数据进行聚类 - # kmeans = KMeans(n_clusters=3, random_state=0).fit(x_data) - # z = kmeans.predict(x_data) - # # 获取聚类后的数据 - # dark = x_data[kmeans.labels_ == 0] - # middle = x_data[kmeans.labels_ == 1] - # light = x_data[kmeans.labels_ == 2] - # # 获取数据的均值 - # dark_mean = np.mean(dark, axis=0) - # middle_mean = np.mean(middle, axis=0) - # light_mean = np.mean(light, axis=0) - # - # # 按照平均值从小到大排序 - # sorted_cluster_indices = np.argsort([dark_mean[0], middle_mean[0], light_mean[0]]) - # print('sorted_cluster_indices:', sorted_cluster_indices) - # # 重新编号聚类标签 - # sorted_labels = np.zeros(len(kmeans.labels_), dtype=int) - # for i, label in enumerate(kmeans.labels_): - # sorted_labels[i] = sorted_cluster_indices[label] - # # 更新kmeans.labels_ - # kmeans.labels_ = sorted_labels - # print('kmeans.labels_:', kmeans.labels_) - # # 获取更新聚类后的数据 - # dark_new = x_data[kmeans.labels_ == 0] - # middle_new = x_data[kmeans.labels_ == 1] - # light_new = x_data[kmeans.labels_ == 2] - # # 获取更新数据的均值 - # dark_mean_new = np.mean(dark_new, axis=0) - # middle_mean_new = np.mean(middle_new, axis=0) - # light_mean_new = np.mean(light_new, axis=0) - # # 打印每个聚类的平均值 - # print('Dark cluster mean:', dark_mean_new) - # print('Middle cluster mean:', middle_mean_new) - # print('Light cluster mean:', light_mean_new) - # # plot_2d - # plt.figure() - # plt.scatter(x_data[:, 0], x_data[:, 1], c=z) - # plt.show() - # 进行色彩数据校正 if self.isCorrect: x_data = x_data / (self.correct_color + 1e-4)