mirror of
https://github.com/NanjingForestryUniversity/supermachine-wood.git
synced 2025-11-08 18:23:54 +00:00
Merge remote-tracking branch 'origin/dual_sock' into dual_sock
This commit is contained in:
commit
81f7b1dedc
70
classifer.py
70
classifer.py
@ -31,7 +31,7 @@ sys.path.append(os.getcwd())
|
|||||||
from root_dir import ROOT_DIR
|
from root_dir import ROOT_DIR
|
||||||
import utils
|
import utils
|
||||||
|
|
||||||
FEATURE_INDEX = [0,1,2,4]
|
FEATURE_INDEX = [0,1,2]
|
||||||
delete_columns = 10 # 已弃用
|
delete_columns = 10 # 已弃用
|
||||||
num_bins = 10
|
num_bins = 10
|
||||||
|
|
||||||
@ -60,10 +60,10 @@ class WoodClass(object):
|
|||||||
self._single_pick = single_pick_mode
|
self._single_pick = single_pick_mode
|
||||||
self.set_purity(self.pur)
|
self.set_purity(self.pur)
|
||||||
self.change_pick_mode(single_pick_mode)
|
self.change_pick_mode(single_pick_mode)
|
||||||
# self.model = LogisticRegression(C=1e5)
|
self.model = LogisticRegression(C=1e5)
|
||||||
self.left_correct = left_correct
|
self.left_correct = left_correct
|
||||||
# self.model = KNeighborsClassifier()
|
# self.model = KNeighborsClassifier()
|
||||||
self.model = DecisionTreeClassifier()
|
# self.model = DecisionTreeClassifier()
|
||||||
else:
|
else:
|
||||||
self.load(load_from)
|
self.load(load_from)
|
||||||
self.isCorrect = False
|
self.isCorrect = False
|
||||||
@ -113,7 +113,7 @@ class WoodClass(object):
|
|||||||
:return:
|
:return:
|
||||||
"""
|
"""
|
||||||
# 训练数据文件位置
|
# 训练数据文件位置
|
||||||
result = self.get_train_data(data_path, plot_2d=False)
|
result = self.get_train_data(data_path, plot_2d=True)
|
||||||
if result is False:
|
if result is False:
|
||||||
return 0
|
return 0
|
||||||
x, y = result
|
x, y = result
|
||||||
@ -122,7 +122,7 @@ class WoodClass(object):
|
|||||||
model_name = self.save(file_name)
|
model_name = self.save(file_name)
|
||||||
return model_name
|
return model_name
|
||||||
|
|
||||||
def fit(self, x, y, test_size=0.7):
|
def fit(self, x, y, test_size=0.3):
|
||||||
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=test_size, random_state=0)
|
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=test_size, random_state=0)
|
||||||
self.model.fit(x_train, y_train)
|
self.model.fit(x_train, y_train)
|
||||||
y_pred = self.model.predict(x_test)
|
y_pred = self.model.predict(x_test)
|
||||||
@ -304,14 +304,14 @@ class WoodClass(object):
|
|||||||
x = cv2.cvtColor(x, cv2.COLOR_BGR2LAB)
|
x = cv2.cvtColor(x, cv2.COLOR_BGR2LAB)
|
||||||
x = np.concatenate((x, x_hsv), axis=2)
|
x = np.concatenate((x, x_hsv), axis=2)
|
||||||
x = np.reshape(x, (x.shape[0] * x.shape[1], x.shape[2]))
|
x = np.reshape(x, (x.shape[0] * x.shape[1], x.shape[2]))
|
||||||
|
x = x[x[:, 0] > 30]
|
||||||
# x = x[np.argsort(x[:, 0])]
|
# x = x[np.argsort(x[:, 0])]
|
||||||
# x = x[-self.k:, :]
|
# x = x[-self.k:, :]
|
||||||
|
|
||||||
|
|
||||||
hist, bins = np.histogram(x[:, 0], bins=num_bins)
|
hist, bins = np.histogram(x[:, 0], bins=num_bins)
|
||||||
hist = hist[1:]
|
# hist = hist[1:]
|
||||||
bins = bins[1:]
|
# bins = bins[1:]
|
||||||
sorted_indices = np.argsort(hist)
|
sorted_indices = np.argsort(hist)
|
||||||
hist_number = sorted_indices[-1]
|
hist_number = sorted_indices[-1]
|
||||||
second_hist_number = sorted_indices[-2]
|
second_hist_number = sorted_indices[-2]
|
||||||
@ -367,6 +367,16 @@ class WoodClass(object):
|
|||||||
data = self.extract_feature(train_img)
|
data = self.extract_feature(train_img)
|
||||||
img_data.append(data)
|
img_data.append(data)
|
||||||
img_data = np.array(img_data)
|
img_data = np.array(img_data)
|
||||||
|
|
||||||
|
# 提取图像名称
|
||||||
|
img_name = [os.path.splitext(file)[0] for file in files]
|
||||||
|
# 提取每个图像名称中的数字
|
||||||
|
img_name = [name[3:] for name in img_name]
|
||||||
|
# 将图像名称个位数前补零
|
||||||
|
img_name = [name.zfill(2) for name in img_name]
|
||||||
|
# 打印图像名称
|
||||||
|
print('img_name:', img_name)
|
||||||
|
|
||||||
return img_data
|
return img_data
|
||||||
|
|
||||||
def get_train_data(self, data_dir=None, plot_2d=False, plot_data_3d=False, save_data=False):
|
def get_train_data(self, data_dir=None, plot_2d=False, plot_data_3d=False, save_data=False):
|
||||||
@ -386,6 +396,46 @@ class WoodClass(object):
|
|||||||
light_label = 2 * np.ones(len(light_data)).T
|
light_label = 2 * np.ones(len(light_data)).T
|
||||||
y_data = np.hstack((dark_label, middle_label, light_label))
|
y_data = np.hstack((dark_label, middle_label, light_label))
|
||||||
x_data = x_data[:, FEATURE_INDEX]
|
x_data = x_data[:, FEATURE_INDEX]
|
||||||
|
|
||||||
|
# 使用KMeans算法对图片数据进行聚类
|
||||||
|
kmeans = KMeans(n_clusters=3, random_state=0).fit(x_data)
|
||||||
|
z = kmeans.predict(x_data)
|
||||||
|
# 获取聚类后的数据
|
||||||
|
dark = x_data[kmeans.labels_ == 0]
|
||||||
|
middle = x_data[kmeans.labels_ == 1]
|
||||||
|
light = x_data[kmeans.labels_ == 2]
|
||||||
|
# 获取数据的均值
|
||||||
|
dark_mean = np.mean(dark, axis=0)
|
||||||
|
middle_mean = np.mean(middle, axis=0)
|
||||||
|
light_mean = np.mean(light, axis=0)
|
||||||
|
|
||||||
|
# 按照平均值从小到大排序
|
||||||
|
sorted_cluster_indices = np.argsort([dark_mean[0], middle_mean[0], light_mean[0]])
|
||||||
|
print('sorted_cluster_indices:', sorted_cluster_indices)
|
||||||
|
# 重新编号聚类标签
|
||||||
|
sorted_labels = np.zeros(len(kmeans.labels_), dtype=int)
|
||||||
|
for i, label in enumerate(kmeans.labels_):
|
||||||
|
sorted_labels[i] = sorted_cluster_indices[label]
|
||||||
|
# 更新kmeans.labels_
|
||||||
|
kmeans.labels_ = sorted_labels
|
||||||
|
print('kmeans.labels_:', kmeans.labels_)
|
||||||
|
# 获取更新聚类后的数据
|
||||||
|
dark_new = x_data[kmeans.labels_ == 0]
|
||||||
|
middle_new = x_data[kmeans.labels_ == 1]
|
||||||
|
light_new = x_data[kmeans.labels_ == 2]
|
||||||
|
# 获取更新数据的均值
|
||||||
|
dark_mean_new = np.mean(dark_new, axis=0)
|
||||||
|
middle_mean_new = np.mean(middle_new, axis=0)
|
||||||
|
light_mean_new = np.mean(light_new, axis=0)
|
||||||
|
# 打印每个聚类的平均值
|
||||||
|
print('Dark cluster mean:', dark_mean_new)
|
||||||
|
print('Middle cluster mean:', middle_mean_new)
|
||||||
|
print('Light cluster mean:', light_mean_new)
|
||||||
|
# plot_2d
|
||||||
|
plt.figure()
|
||||||
|
plt.scatter(x_data[:, 0], x_data[:, 1], c=z)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
# 进行色彩数据校正
|
# 进行色彩数据校正
|
||||||
if self.isCorrect:
|
if self.isCorrect:
|
||||||
x_data = x_data / (self.correct_color + 1e-4)
|
x_data = x_data / (self.correct_color + 1e-4)
|
||||||
@ -440,8 +490,8 @@ class WoodClass(object):
|
|||||||
:param standard_color: 标准色彩, 默认为白色
|
:param standard_color: 标准色彩, 默认为白色
|
||||||
:return: 校正后的图片 shape = (n_rows, n_cols - cut_col_num, n_channels)
|
:return: 校正后的图片 shape = (n_rows, n_cols - cut_col_num, n_channels)
|
||||||
"""
|
"""
|
||||||
if self.left_correct:
|
|
||||||
img = img[:, 20:, :] # 图片黑边需要去除
|
img = img[:, 20:, :] # 图片黑边需要去除
|
||||||
|
if self.left_correct:
|
||||||
# 按照correct_col_num列数量取出最左侧校正板区域成像结果
|
# 按照correct_col_num列数量取出最左侧校正板区域成像结果
|
||||||
correct_img = img[:, :correct_col_num, :]
|
correct_img = img[:, :correct_col_num, :]
|
||||||
# 校正区域进行均值化
|
# 校正区域进行均值化
|
||||||
@ -468,7 +518,7 @@ if __name__ == '__main__':
|
|||||||
settings.model_path = str(ROOT_DIR / 'models' / wood.fit_pictures(data_path=data_path))
|
settings.model_path = str(ROOT_DIR / 'models' / wood.fit_pictures(data_path=data_path))
|
||||||
|
|
||||||
# 测试单张图片的预测,predict_mode=True表示导入本地的model, False为现场训练的
|
# 测试单张图片的预测,predict_mode=True表示导入本地的model, False为现场训练的
|
||||||
pic = cv2.imread(r"data/316/dark/rgb70.png")
|
pic = cv2.imread(r"data/318/dark/rgb89.png")
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
# for i in range(100):
|
# for i in range(100):
|
||||||
wood_color = wood.predict(pic)
|
wood_color = wood.predict(pic)
|
||||||
|
|||||||
2
hist.py
2
hist.py
@ -13,7 +13,7 @@ ratio = np.sqrt(5000 / (w * h))
|
|||||||
ww, hh = int(ratio * w), int(ratio * h)
|
ww, hh = int(ratio * w), int(ratio * h)
|
||||||
img = cv2.resize(img, (hh, ww))
|
img = cv2.resize(img, (hh, ww))
|
||||||
x = img.reshape(img.shape[0]*img.shape[1], img.shape[2])
|
x = img.reshape(img.shape[0]*img.shape[1], img.shape[2])
|
||||||
|
x = x[x[:,0]>20]
|
||||||
hist, bins = np.histogram(x[:, 0], bins=10)
|
hist, bins = np.histogram(x[:, 0], bins=10)
|
||||||
hist = hist[1:]
|
hist = hist[1:]
|
||||||
bins = bins[1:]
|
bins = bins[1:]
|
||||||
|
|||||||
@ -45,6 +45,8 @@ def process_cmd(cmd: str, data: any, connected_sock: socket.socket, detector: Wo
|
|||||||
settings.model_path = data
|
settings.model_path = data
|
||||||
detector.load(path=settings.model_path)
|
detector.load(path=settings.model_path)
|
||||||
response = simple_sock(connected_sock, cmd_type=cmd)
|
response = simple_sock(connected_sock, cmd_type=cmd)
|
||||||
|
elif cmd == 'DT':
|
||||||
|
pass
|
||||||
else:
|
else:
|
||||||
logging.error(f'错误指令,指令为{cmd}')
|
logging.error(f'错误指令,指令为{cmd}')
|
||||||
response = False
|
response = False
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user