mirror of
https://github.com/NanjingForestryUniversity/supermachine-wood.git
synced 2025-11-08 10:13:53 +00:00
Merge remote-tracking branch 'github/dual_sock' into dual_sock
This commit is contained in:
commit
3815a8e12b
@ -165,6 +165,7 @@ def main():
|
|||||||
socket_send_1.send(send_message)
|
socket_send_1.send(send_message)
|
||||||
print('发送成功')
|
print('发送成功')
|
||||||
result = socket_send_2.recv(5)
|
result = socket_send_2.recv(5)
|
||||||
|
print(result)
|
||||||
new_leng = int.from_bytes(result[1:], byteorder='big')
|
new_leng = int.from_bytes(result[1:], byteorder='big')
|
||||||
result = socket_send_2.recv(new_leng)
|
result = socket_send_2.recv(new_leng)
|
||||||
print(result)
|
print(result)
|
||||||
|
|||||||
41
classifer.py
41
classifer.py
@ -394,45 +394,6 @@ class WoodClass(object):
|
|||||||
# dark_name, middle_name, light_name三个list合并
|
# dark_name, middle_name, light_name三个list合并
|
||||||
img_name = dark_name + middle_name + light_name
|
img_name = dark_name + middle_name + light_name
|
||||||
|
|
||||||
# # 使用KMeans算法对图片数据进行聚类
|
|
||||||
# kmeans = KMeans(n_clusters=3, random_state=0).fit(x_data)
|
|
||||||
# z = kmeans.predict(x_data)
|
|
||||||
# # 获取聚类后的数据
|
|
||||||
# dark = x_data[kmeans.labels_ == 0]
|
|
||||||
# middle = x_data[kmeans.labels_ == 1]
|
|
||||||
# light = x_data[kmeans.labels_ == 2]
|
|
||||||
# # 获取数据的均值
|
|
||||||
# dark_mean = np.mean(dark, axis=0)
|
|
||||||
# middle_mean = np.mean(middle, axis=0)
|
|
||||||
# light_mean = np.mean(light, axis=0)
|
|
||||||
#
|
|
||||||
# # 按照平均值从小到大排序
|
|
||||||
# sorted_cluster_indices = np.argsort([dark_mean[0], middle_mean[0], light_mean[0]])
|
|
||||||
# print('sorted_cluster_indices:', sorted_cluster_indices)
|
|
||||||
# # 重新编号聚类标签
|
|
||||||
# sorted_labels = np.zeros(len(kmeans.labels_), dtype=int)
|
|
||||||
# for i, label in enumerate(kmeans.labels_):
|
|
||||||
# sorted_labels[i] = sorted_cluster_indices[label]
|
|
||||||
# # 更新kmeans.labels_
|
|
||||||
# kmeans.labels_ = sorted_labels
|
|
||||||
# print('kmeans.labels_:', kmeans.labels_)
|
|
||||||
# # 获取更新聚类后的数据
|
|
||||||
# dark_new = x_data[kmeans.labels_ == 0]
|
|
||||||
# middle_new = x_data[kmeans.labels_ == 1]
|
|
||||||
# light_new = x_data[kmeans.labels_ == 2]
|
|
||||||
# # 获取更新数据的均值
|
|
||||||
# dark_mean_new = np.mean(dark_new, axis=0)
|
|
||||||
# middle_mean_new = np.mean(middle_new, axis=0)
|
|
||||||
# light_mean_new = np.mean(light_new, axis=0)
|
|
||||||
# # 打印每个聚类的平均值
|
|
||||||
# print('Dark cluster mean:', dark_mean_new)
|
|
||||||
# print('Middle cluster mean:', middle_mean_new)
|
|
||||||
# print('Light cluster mean:', light_mean_new)
|
|
||||||
# # plot_2d
|
|
||||||
# plt.figure()
|
|
||||||
# plt.scatter(x_data[:, 0], x_data[:, 1], c=z)
|
|
||||||
# plt.show()
|
|
||||||
|
|
||||||
# 进行色彩数据校正
|
# 进行色彩数据校正
|
||||||
if self.isCorrect:
|
if self.isCorrect:
|
||||||
x_data = x_data / (self.correct_color + 1e-4)
|
x_data = x_data / (self.correct_color + 1e-4)
|
||||||
@ -546,7 +507,7 @@ class WoodClass(object):
|
|||||||
y_data = y_data[sorted_idx]
|
y_data = y_data[sorted_idx]
|
||||||
labels = labels[sorted_idx]
|
labels = labels[sorted_idx]
|
||||||
img_names = [img_names[i] for i in sorted_idx]
|
img_names = [img_names[i] for i in sorted_idx]
|
||||||
mapping = {0: 's', 1: 'z', 2: 'q'}
|
mapping = {0: 'S', 1: 'Z', 2: 'Q'}
|
||||||
y_data = [mapping[i] for i in y_data]
|
y_data = [mapping[i] for i in y_data]
|
||||||
labels = [mapping[i] for i in labels]
|
labels = [mapping[i] for i in labels]
|
||||||
data = []
|
data = []
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user