supermachine-tobacco/transmit.py

417 lines
15 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import multiprocessing
import os
import threading
from multiprocessing import Process, Queue
import time
from multiprocessing.synchronize import Lock
from threading import Lock
import cv2
import utils
from utils import ImgQueue as ImgQueue
import functools
import numpy as np
from config import Config
from models import SpecDetector, RgbDetector
from typing import Any, Union
import logging
logging.basicConfig(format='%(asctime)s %(levelname)s %(name)s %(message)s',
level=logging.WARNING)
class Transmitter(object):
_io_lock: Union[Lock, Lock]
def __init__(self, job_name:str, run_process:bool = False):
self.output = None
self.job_name = job_name
self.run_process = run_process # If true, run process when started else run thread.
self._thread_stop = threading.Event()
self._thread_stop.clear()
self._running_handler = None
self._io_lock = multiprocessing.Lock() if run_process else threading.Lock()
def set_source(self, *args, **kwargs):
"""
用于设置数据的来源每个receiver仅允许有单个来源
:param args:
:param kwargs:
:return:
"""
raise NotImplementedError
def set_output(self, *args, **kwargs):
"""
设置输出源
:param output:
:return:
"""
raise NotImplementedError
def start(self, *args, **kwargs):
"""
启动线程或进程
:param args:
:param kwargs:
:return:
"""
name = kwargs.get('name', default='base thread')
if not self.run_process:
self._running_handler = threading.Thread(target=self.job_func, name=name, args=args)
else:
self._running_handler = Process(target=self.job_func, name=name, args=args, daemon=True)
self._running_handler.start()
def stop(self, *args, **kwargs):
"""
停止线程或进程
:param args:
:param kwargs:
:return:
"""
if self._running_handler is not None:
self._thread_stop.set()
self._running_handler = None
@staticmethod
def job_decorator(func):
functools.wraps(func)
def wrapper(self, *args, **kwargs):
logging.info(f'{self.job_name} {"process" if self.run_process else "thread"} start.')
while not self._thread_stop.is_set():
self.job_func(*args, **kwargs)
logging.info(f'{self.job_name} {"process" if self.run_process else "thread"} stop.')
self._need_stop.clear()
return wrapper
def job_func(self, *args, **kwargs):
raise NotImplementedError
class BeforeAfterMethods:
@classmethod
def mask_preprocess(cls, mask: np.ndarray):
logging.info(f"Send mask with size {mask.shape}")
return mask.tobytes()
@classmethod
def spec_data_post_process(cls, data):
if len(data) < 3:
threshold = int(float(data))
logging.info(f"Get Spec threshold: {threshold}")
return threshold
else:
spec_img = np.frombuffer(data, dtype=np.float32).\
reshape((Config.nRows, Config.nBands, -1)).transpose(0, 2, 1)
logging.info(f"Get SPEC image with size {spec_img.shape}")
return spec_img
@classmethod
def rgb_data_post_process(cls, data):
if len(data) < 3:
threshold = int(float(data))
logging.info(f"Get RGB threshold: {threshold}")
return threshold
else:
rgb_img = np.frombuffer(data, dtype=np.uint8).reshape((Config.nRgbRows, Config.nRgbCols, -1))
logging.info(f"Get RGB img with size {rgb_img.shape}")
return rgb_img
class FileReceiver(Transmitter):
def __init__(self, job_name:str, input_dir: str, output_queue:ImgQueue, speed: int=3, name_pattern=None):
super(FileReceiver, self).__init__(job_name=job_name, run_process=False)
self.input_dir = input_dir
self.send_speed = speed
self.file_names = None
self.name_pattern = name_pattern
self.file_idx = 0
self.output_queue = None
self.set_source(input_dir, name_pattern)
self.set_output(output_queue)
def set_source(self, input_dir, name_pattern=None):
self.name_pattern = name_pattern if name_pattern is not None else self.name_pattern
file_names = os.listdir(input_dir)
if len(file_names) == 0:
logging.warning('指定了空的文件夹')
if self.name_pattern is not None:
file_names = [file_name for file_name in file_names if (self.name_pattern in file_name)]
else:
file_names = file_names
with self._io_lock:
self.file_names = file_names
self.file_idx = 0
def set_output(self, output: ImgQueue):
with self._io_lock:
self.output_queue = output
@Transmitter.job_decorator
def job_func(self, *args, **kwargs):
with self._io_lock:
self.file_idx += 1
if self.file_idx == len()
file_name = self.file_names[self.file_idx]
class FifoReceiver(Transmitter):
def __init__(self, job_name:str, fifo_path: str, output: ImgQueue,
read_max_num: int, msg_queue=None):
super().__init__(job_name=job_name)
self._input_fifo_path = None
self._output_queue = None
self._msg_queue = msg_queue
self._max_len = read_max_num
self.set_source(fifo_path)
self.set_output(output)
def set_source(self, fifo_path: str):
if not os.access(fifo_path, os.F_OK):
os.mkfifo(fifo_path, 0o777)
self._input_fifo_path = fifo_path
def set_output(self, output: ImgQueue):
self._output_queue = output
@Transmitter.job_decorator
def job_func(self, post_process_func=None):
"""
接收线程
:param post_process_func:
:return:
"""
input_fifo = os.open(self._input_fifo_path, os.O_RDONLY)
data = os.read(input_fifo, self._max_len)
if post_process_func is not None:
data = post_process_func(data)
self._output_queue.safe_put(data)
os.close(input_fifo)
class FifoSender(Transmitter):
def __init__(self, output_fifo_path: str, source: ImgQueue):
super().__init__()
self._input_source = None
self._output_fifo_path = None
self.set_source(source)
self.set_output(output_fifo_path)
self._need_stop = threading.Event()
self._need_stop.clear()
self._running_thread = None
def set_source(self, source: ImgQueue):
self._input_source = source
def set_output(self, output_fifo_path: str):
if not os.access(output_fifo_path, os.F_OK):
os.mkfifo(output_fifo_path, 0o777)
self._output_fifo_path = output_fifo_path
def job_func(self, pre_process, *args, **kwargs):
"""
接收线程
:param pre_process:
:return:
"""
if self._input_source.empty():
return
data = self._input_source.get()
if pre_process is not None:
data = pre_process(data)
output_fifo = os.open(self._output_fifo_path, os.O_WRONLY)
os.write(output_fifo, data)
os.close(output_fifo)
def __del__(self):
self.stop()
if self._running_thread is not None:
self._running_thread.join()
class CmdImgSplitMidware(Transmitter):
"""
用于控制命令和图像的中间件
"""
def __init__(self, subscribers: typing.Dict[str, ImgQueue], rgb_queue: ImgQueue, spec_queue: ImgQueue):
super().__init__()
self._rgb_queue = None
self._spec_queue = None
self._subscribers = None
self._server_thread = None
self.set_source(rgb_queue, spec_queue)
self.set_output(subscribers)
self.thread_stop = threading.Event()
def set_source(self, rgb_queue: ImgQueue, spec_queue: ImgQueue):
self._rgb_queue = rgb_queue
self._spec_queue = spec_queue
def set_output(self, output: typing.Dict[str, ImgQueue]):
self._subscribers = output
def start(self, name='CMD_thread'):
self._server_thread = threading.Thread(target=self._cmd_control_service, name=name)
self._server_thread.start()
def stop(self):
self.thread_stop.set()
def _cmd_control_service(self):
while not self.thread_stop.is_set():
# 判断是否有数据,如果没有数据那么就等下次吧,如果有数据来,必须保证同时
if self._rgb_queue.empty() or self._spec_queue.empty():
continue
rgb_data = self._rgb_queue.get()
spec_data = self._spec_queue.get()
if isinstance(rgb_data, int) and isinstance(spec_data, int):
# 看是不是命令需要执行如果是命令,就执行
Config.rgb_size_threshold = rgb_data
Config.spec_size_threshold = spec_data
logging.info("获取到指令")
continue
elif isinstance(spec_data, np.ndarray) and isinstance(rgb_data, np.ndarray):
# 如果是图片,交给预测的人
for name, subscriber in self._subscribers.items():
item = (spec_data, rgb_data)
subscriber.safe_put(item)
else:
# 否则程序出现毁灭性问题,立刻崩
logging.critical('两个相机传回的数据没有对上')
raise Exception("两个相机传回的数据没有对上")
self.thread_stop.clear()
class ImageSaver(Transmitter):
"""
进行图片存储的中间件
"""
def set_source(self, *args, **kwargs):
pass
def start(self, *args, **kwargs):
pass
def stop(self, *args, **kwargs):
pass
class ThreadDetector(Transmitter):
def __init__(self, input_queue: ImgQueue, output_queue: ImgQueue):
super().__init__()
self._input_queue, self._output_queue = input_queue, output_queue
self._spec_detector = SpecDetector(blk_model_path=Config.blk_model_path,
pixel_model_path=Config.pixel_model_path)
self._rgb_detector = RgbDetector(tobacco_model_path=Config.rgb_tobacco_model_path,
background_model_path=Config.rgb_background_model_path)
self._predict_thread = None
self._thread_exit = threading.Event()
def set_source(self, img_queue: ImgQueue):
self._input_queue = img_queue
def stop(self, *args, **kwargs):
self._thread_exit.set()
def start(self, name='predict_thread'):
self._predict_thread = threading.Thread(target=self._predict_server, name=name)
self._predict_thread.start()
def predict(self, spec: np.ndarray, rgb: np.ndarray):
logging.info(f'Detector get image with shape {spec.shape} and {rgb.shape}')
t1 = time.time()
mask = self._spec_detector.predict(spec)
t2 = time.time()
logging.info(f'Detector finish spec predict within {(t2 - t1) * 1000:.2f}ms')
# rgb识别
mask_rgb = self._rgb_detector.predict(rgb)
t3 = time.time()
logging.info(f'Detector finish rgb predict within {(t3 - t2) * 1000:.2f}ms')
# 结果合并
mask_result = (mask | mask_rgb).astype(np.uint8)
mask_result = mask_result.repeat(Config.blk_size, axis=0).repeat(Config.blk_size, axis=1).astype(np.uint8)
t4 = time.time()
logging.info(f'Detector finish merge within {(t4 - t3) * 1000: .2f}ms')
logging.info(f'Detector finish predict within {(time.time() -t1)*1000:.2f}ms')
return mask_result
def _predict_server(self):
while not self._thread_exit.is_set():
if not self._input_queue.empty():
spec, rgb = self._input_queue.get()
mask = self.predict(spec, rgb)
self._output_queue.safe_put(mask)
self._thread_exit.clear()
class ProcessDetector(Transmitter):
def __init__(self, input_queue: ImgQueue, output_queue: ImgQueue):
super().__init__()
self._input_queue, self._output_queue = input_queue, output_queue
self._spec_detector = SpecDetector(blk_model_path=Config.blk_model_path,
pixel_model_path=Config.pixel_model_path)
self._rgb_detector = RgbDetector(tobacco_model_path=Config.rgb_tobacco_model_path,
background_model_path=Config.rgb_background_model_path)
self._predict_thread = None
self._thread_exit = threading.Event()
def set_source(self, img_queue: ImgQueue):
self._input_queue = img_queue
def stop(self, *args, **kwargs):
self._thread_exit.set()
def start(self, name='predict_thread'):
self._predict_thread = Process(target=self._predict_server, name=name, daemon=True)
self._predict_thread.start()
def predict(self, spec: np.ndarray, rgb: np.ndarray):
logging.debug(f'Detector get image with shape {spec.shape} and {rgb.shape}')
t1 = time.time()
mask_spec = self._spec_detector.predict(spec)
t2 = time.time()
logging.debug(f'Detector finish spec predict within {(t2 - t1) * 1000:.2f}ms')
# rgb识别
mask_rgb = self._rgb_detector.predict(rgb)
t3 = time.time()
logging.debug(f'Detector finish rgb predict within {(t3 - t2) * 1000:.2f}ms')
# 结果合并
# mask_result = (mask | mask_rgb).astype(np.uint8)
# mask_result = mask_result.repeat(Config.blk_size, axis=0).repeat(Config.blk_size, axis=1).astype(np.uint8)
# 进行多个喷阀的合并
masks = [utils.valve_expend(mask) for mask in [mask_spec, mask_rgb]]
# 进行喷阀同时开启限制
masks = [utils.valve_limit(mask, Config.max_open_valve_limit) for mask in masks]
# control the size of the output masks, 在resize前图像的宽度是和喷阀对应的
masks = [cv2.resize(mask.astype(np.uint8), Config.target_size) for mask in masks]
t4 = time.time()
logging.debug(f'Detector finish merge within {(t4 - t3) * 1000: .2f}ms')
logging.debug(f'Detector finish predict within {(time.time() -t1)*1000:.2f}ms')
return masks
def _predict_server(self):
while not self._thread_exit.is_set():
if not self._input_queue.empty():
spec, rgb = self._input_queue.get()
masks = self.predict(spec, rgb)
self._output_queue.put(masks[:])
self._thread_exit.clear()
class SplitMidware(Transmitter):
def set_source(self, mask_source: ImgQueue):
def start(self, *args, **kwargs):
pass
def stop(self, *args, **kwargs):
pass