mirror of
https://github.com/NanjingForestryUniversity/supermachine-tobacco.git
synced 2025-11-08 14:23:55 +00:00
173 lines
7.3 KiB
Python
173 lines
7.3 KiB
Python
# -*- codeing = utf-8 -*-
|
|
# Time : 2022/7/19 10:49
|
|
# @Auther : zhouchao
|
|
# @File: main_test.py
|
|
# @Software:PyCharm
|
|
import itertools
|
|
import logging
|
|
import os
|
|
import time
|
|
import socket
|
|
import typing
|
|
|
|
import cv2
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
import transmit
|
|
from config import Config
|
|
from models import Detector, AnonymousColorDetector, ManualTree, SpecDetector, RgbDetector
|
|
from utils import read_labeled_img, size_threshold, natural_sort
|
|
|
|
|
|
class TestMain:
|
|
def __init__(self):
|
|
self._spec_detector = SpecDetector(blk_model_path=Config.blk_model_path,
|
|
pixel_model_path=Config.pixel_model_path)
|
|
self._rgb_detector = RgbDetector(tobacco_model_path=Config.rgb_tobacco_model_path,
|
|
background_model_path=Config.rgb_background_model_path)
|
|
|
|
def pony_run(self, test_path, test_spectra=False, test_rgb=False,
|
|
convert=False, get_delta=False):
|
|
"""
|
|
虚拟读图测试程序
|
|
|
|
:param test_path: 测试文件夹或者图片
|
|
:param test_spectra: 是否测试光谱
|
|
:param test_rgb: 是否测试rgb
|
|
:param convert: 是否进行格式转化
|
|
:return:
|
|
"""
|
|
if os.path.isdir(test_path):
|
|
rgb_file_names, spec_file_names = [[file_name for file_name in os.listdir(test_path) if
|
|
file_name.startswith(file_type)] for file_type in ['rgb', 'spec']]
|
|
rgb_file_names, spec_file_names = natural_sort(rgb_file_names), natural_sort(spec_file_names)
|
|
else:
|
|
if test_spectra:
|
|
with open(test_path, 'rb') as f:
|
|
data = f.read()
|
|
spec_img = transmit.BeforeAfterMethods.spec_data_post_process(data)
|
|
_ = self.test_spec(spec_img=spec_img, img_name=test_path)
|
|
elif test_rgb:
|
|
with open(test_path, 'rb') as f:
|
|
data = f.read()
|
|
rgb_img = transmit.BeforeAfterMethods.rgb_data_post_process(data)
|
|
_ = self.test_rgb(rgb_img, img_name=test_path)
|
|
return
|
|
for rgb_file_name, spec_file_name in zip(rgb_file_names, spec_file_names):
|
|
if test_spectra:
|
|
with open(os.path.join(test_path, spec_file_name), 'rb') as f:
|
|
data = f.read()
|
|
spec_img = transmit.BeforeAfterMethods.spec_data_post_process(data)
|
|
spec_mask = self.test_spec(spec_img, img_name=spec_file_name)
|
|
if test_rgb:
|
|
with open(os.path.join(test_path, rgb_file_name), 'rb') as f:
|
|
data = f.read()
|
|
rgb_img = transmit.BeforeAfterMethods.rgb_data_post_process(data)
|
|
rgb_mask = self.test_rgb(rgb_img, img_name=rgb_file_name)
|
|
if test_rgb and test_spectra:
|
|
if get_delta:
|
|
spec_cv = np.clip(spec_img[..., [21, 3, 0]], a_min=0, a_max=1) * 255
|
|
spec_cv = spec_cv.astype(np.uint8)
|
|
delta = self.calculate_delta(rgb_img, spec_cv)
|
|
print(delta)
|
|
self.merge(rgb_img=rgb_img, rgb_mask=rgb_mask,
|
|
spec_img=spec_img[..., [21, 3, 0]], spec_mask=spec_mask,
|
|
rgb_file_name=rgb_file_name, spec_file_name=spec_file_name)
|
|
|
|
def test_rgb(self, rgb_img, img_name):
|
|
rgb_mask = self._rgb_detector.predict(rgb_img)
|
|
fig, axs = plt.subplots(2, 1)
|
|
axs[0].imshow(rgb_img)
|
|
axs[0].set_title(f"rgb img {img_name}")
|
|
axs[1].imshow(rgb_mask)
|
|
axs[1].set_title('rgb mask')
|
|
plt.show()
|
|
return rgb_mask
|
|
|
|
def test_spec(self, spec_img, img_name):
|
|
spec_mask = self._spec_detector.predict(spec_img)
|
|
fig, axs = plt.subplots(2, 1)
|
|
axs[0].imshow(spec_img[..., [21, 3, 0]])
|
|
axs[0].set_title(f"spec img {img_name}")
|
|
axs[1].imshow(spec_mask)
|
|
axs[1].set_title('spec mask')
|
|
plt.show()
|
|
return spec_mask
|
|
|
|
@staticmethod
|
|
def merge(rgb_img, rgb_mask, spec_img, spec_mask, rgb_file_name, spec_file_name):
|
|
mask_result = (spec_mask | rgb_mask).astype(np.uint8)
|
|
mask_result = mask_result.repeat(Config.blk_size, axis=0).repeat(Config.blk_size, axis=1).astype(np.uint8)
|
|
fig, axs = plt.subplots(3, 2)
|
|
axs[0, 0].set_title(rgb_file_name)
|
|
axs[0, 0].imshow(rgb_img)
|
|
axs[1, 0].imshow(spec_img)
|
|
axs[1, 0].set_title(spec_file_name)
|
|
axs[2, 0].imshow(mask_result)
|
|
axs[0, 1].imshow(rgb_mask)
|
|
axs[1, 1].imshow(spec_mask)
|
|
axs[2, 1].imshow(mask_result)
|
|
plt.show()
|
|
return mask_result
|
|
|
|
def calculate_delta(self, rgb_img, spec_img, search_area_size=(400, 200), eps=1):
|
|
rgb_grey, spec_grey = cv2.cvtColor(rgb_img, cv2.COLOR_RGB2GRAY), cv2.cvtColor(spec_img, cv2.COLOR_RGB2GRAY)
|
|
_, rgb_bin = cv2.threshold(rgb_grey, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
|
_, spec_bin = cv2.threshold(spec_grey, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
|
spec_bin = cv2.resize(spec_bin, dsize=(rgb_bin.shape[1], rgb_bin.shape[0]))
|
|
search_area = np.zeros(search_area_size)
|
|
for x in range(0, search_area_size[0], eps):
|
|
for y in range(0, search_area_size[1], eps):
|
|
delta_x, delta_y = x - search_area_size[0] // 2, y - search_area_size[1] // 2
|
|
rgb_cross_area = self.get_cross_area(rgb_bin, delta_x, delta_y)
|
|
spce_cross_area = self.get_cross_area(spec_bin, -delta_x, -delta_y)
|
|
response_altitude = np.sum(np.sum(rgb_cross_area & spce_cross_area))
|
|
search_area[x, y] = response_altitude
|
|
delta = np.unravel_index(np.argmax(search_area), search_area.shape)
|
|
delta = (delta[0] - search_area_size[1] // 2, delta[1] - search_area_size[1] // 2)
|
|
delta_x, delta_y = delta
|
|
|
|
rgb_cross_area = self.get_cross_area(rgb_bin, delta_x, delta_y)
|
|
spce_cross_area = self.get_cross_area(spec_bin, -delta_x, -delta_y)
|
|
|
|
human_word = "SPEC is " + str(abs(delta_x)) + " pixels "
|
|
human_word += 'after' if delta_x >= 0 else ' before '
|
|
human_word += "RGB and " + str(abs(delta_y)) + " pixels "
|
|
human_word += "right " if delta_y >= 0 else "left "
|
|
human_word += "the RGB"
|
|
|
|
fig, axs = plt.subplots(3, 1)
|
|
axs[0].imshow(rgb_img)
|
|
axs[0].set_title("RGB img")
|
|
axs[1].imshow(spec_img)
|
|
axs[1].set_title("spec img")
|
|
axs[2].imshow(rgb_cross_area & spce_cross_area)
|
|
axs[2].set_title("cross part")
|
|
plt.suptitle(human_word)
|
|
plt.show()
|
|
|
|
print(human_word)
|
|
return delta
|
|
|
|
@staticmethod
|
|
def get_cross_area(img_bin, delta_x, delta_y):
|
|
if delta_x >= 0:
|
|
cross_area = img_bin[delta_x:, :]
|
|
else:
|
|
cross_area = img_bin[:delta_x, :]
|
|
if delta_y >= 0:
|
|
cross_area = cross_area[:, delta_y:]
|
|
else:
|
|
cross_area = cross_area[:, :delta_y]
|
|
return cross_area
|
|
|
|
|
|
if __name__ == '__main__':
|
|
import argparse
|
|
parser = argparse.ArgumentParser(description='Run image test or ')
|
|
tester = TestMain()
|
|
tester.pony_run(test_path=r'/home/lzy/2022.7.30/tobacco_v1_0/saved_img/',
|
|
test_rgb=False, test_spectra=False, get_delta=False)
|
|
|