supermachine-tobacco/05_model_training.ipynb
2022-08-02 12:09:16 +08:00

239 lines
4.6 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"source": [
"# 训练像素模型\n",
"用这个文件可以训练出需要使用的光谱像素点模型"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 22,
"outputs": [],
"source": [
"import numpy as np\n",
"import pickle\n",
"from utils import read_envi_ascii\n",
"from config import Config\n",
"from models import ManualTree"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"# 一些变量"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 23,
"outputs": [],
"source": [
"data_path = r'data/envi20220802.txt'\n",
"name_dict = {'tobacco': 1, 'yantou':2, 'kazhi':3, 'bomo':4, 'jiaodai':5, 'background':0}"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"# 构建数据集"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 24,
"outputs": [],
"source": [
"data = read_envi_ascii(data_path)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 25,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"zibian (569, 448)\n",
"tobacco (1457, 448)\n",
"yantou (354, 448)\n",
"kazhi (449, 448)\n",
"bomo (1154, 448)\n",
"jiaodai (566, 448)\n",
"background (1235, 448)\n"
]
}
],
"source": [
"_ = [print(class_name, d.shape) for class_name, d in data.items()]"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 26,
"outputs": [],
"source": [
"data_x = [d for class_name, d in data.items() if class_name in name_dict.keys()]\n",
"data_y = [np.ones((d.shape[0], ))*name_dict[class_name] for class_name, d in data.items() if class_name in name_dict.keys()]\n",
"data_x, data_y = np.concatenate(data_x), np.concatenate(data_y)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"## 取出需要的22个特征谱段"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 27,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"这些是现在的数据: (5215, 448) (5215,)\n",
"截取其中需要的部分后: (5215, 22) (5215,)\n"
]
}
],
"source": [
"print(\"这些是现在的数据: \", data_x.shape, data_y.shape)\n",
"data_x_cut = data_x[..., Config.bands]\n",
"print(\"截取其中需要的部分后: \", data_x_cut.shape, data_y.shape)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"## 进行样本平衡"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 30,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"这是重采样后的数据: (8742, 22) (8742,)\n"
]
}
],
"source": [
"from imblearn.over_sampling import RandomOverSampler\n",
"ros = RandomOverSampler(random_state=0)\n",
"x_resampled, y_resampled = ros.fit_resample(data_x_cut, data_y)\n",
"print('这是重采样后的数据: ', x_resampled.shape, y_resampled.shape)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"#"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}