supermachine-tobacco/main.py

144 lines
7.3 KiB
Python
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
import sys
import cv2
import time
import numpy as np
import utils
from config import Config
from models import RgbDetector, SpecDetector
import logging
def main(only_spec=False, only_color=False, if_merge=False, interval_time=None, delay_repeat_time=None):
spec_detector = SpecDetector(blk_model_path=Config.blk_model_path, pixel_model_path=Config.pixel_model_path)
rgb_detector = RgbDetector(tobacco_model_path=Config.rgb_tobacco_model_path,
background_model_path=Config.rgb_background_model_path)
_, _ = spec_detector.predict(np.ones((Config.nRows, Config.nCols, Config.nBands), dtype=float)*0.4),\
rgb_detector.predict(np.ones((Config.nRgbRows, Config.nRgbCols, Config.nRgbBands), dtype=np.uint8)*40)
total_len = Config.nRows * Config.nCols * Config.nBands * 4 # float型变量, 4个字节
total_rgb = Config.nRgbRows * Config.nRgbCols * Config.nRgbBands * 1 # int型变量
if not os.access(img_fifo_path, os.F_OK):
os.mkfifo(img_fifo_path, 0o777)
if not os.access(rgb_fifo_path, os.F_OK):
os.mkfifo(rgb_fifo_path, 0o777)
if not os.access(mask_fifo_path, os.F_OK):
os.mkfifo(mask_fifo_path, 0o777)
if not os.access(rgb_mask_fifo_path, os.F_OK):
os.mkfifo(rgb_mask_fifo_path, 0o777)
logging.info(f"请注意!正在以调试模式运行程序,输出的信息可能较多。")
if (interval_time is not None) and (delay_repeat_time is not None):
interval_time = float(interval_time) / 1000.0
delay_repeat_time = int(delay_repeat_time)
logging.warning(f'Delay {interval_time*1000:.2f}ms will be added per {delay_repeat_time} frames')
delay_repeat_time_count = 0
while True:
fd_img = os.open(img_fifo_path, os.O_RDONLY)
fd_rgb = os.open(rgb_fifo_path, os.O_RDONLY)
# spec data read
data = os.read(fd_img, total_len)
if len(data) < 3:
try:
threshold = int(float(data))
Config.spec_size_threshold = threshold
logging.info(f'[INFO] Get spec threshold: {threshold}')
except Exception as e:
logging.error(f'毁灭性错误:收到长度小于3却无法转化为整数spec_size_threshold的网络报文报文内容为 {data},'
f' 错误为 {e}.')
else:
data_total = data
os.close(fd_img)
# rgb data read
rgb_data = os.read(fd_rgb, total_rgb)
if len(rgb_data) < 3:
try:
rgb_threshold = int(float(rgb_data))
Config.rgb_size_threshold = rgb_threshold
logging.info(f'Get rgb threshold: {rgb_threshold}')
except Exception as e:
logging.error(f'毁灭性错误:收到长度小于3却无法转化为整数spec_size_threshold的网络报文报文内容为 {total_rgb},'
f' 错误为 {e}.')
continue
else:
rgb_data_total = rgb_data
os.close(fd_rgb)
# 识别 read
since = time.time()
try:
img_data = np.frombuffer(data_total, dtype=np.float32).reshape((Config.nRows, Config.nBands, -1)) \
.transpose(0, 2, 1)
except Exception as e:
logging.error(f'毁灭性错误!收到的光谱数据长度为{len(data_total)}无法转化成指定的形状 {e}')
try:
rgb_data = np.frombuffer(rgb_data_total, dtype=np.uint8).reshape((Config.nRgbRows, Config.nRgbCols, -1))
except Exception as e:
logging.error(f'毁灭性错误!收到的rgb数据长度为{len(rgb_data)}无法转化成指定形状 {e}')
# predict
if only_spec:
# 光谱识别
mask_spec = spec_detector.predict(img_data).astype(np.uint8)
_ = rgb_detector.predict(rgb_data)
mask_rgb = np.zeros_like(mask_spec, dtype=np.uint8)
elif only_color:
# rgb识别
_ = spec_detector.predict(img_data)
mask_rgb = rgb_detector.predict(rgb_data).astype(np.uint8)
# mask_spec = mask_rgb
mask_spec = np.zeros_like(mask_rgb, dtype=np.uint8)
else:
mask_spec = spec_detector.predict(img_data).astype(np.uint8)
mask_rgb = rgb_detector.predict(rgb_data).astype(np.uint8)
# 进行多个喷阀的合并
masks = [utils.valve_expend(mask) for mask in [mask_spec, mask_rgb]]
# 进行喷阀同时开启限制
masks = [utils.valve_limit(mask, Config.max_open_valve_limit) for mask in masks]
# control the size of the output masks, 在resize前图像的宽度是和喷阀对应的
masks = [cv2.resize(mask.astype(np.uint8), Config.target_size) for mask in masks]
# merge the masks if needed
if if_merge:
masks = [masks[0] | masks[1], masks[1]]
if (interval_time is not None) and (delay_repeat_time is not None):
delay_repeat_time_count += 1
if delay_repeat_time_count > delay_repeat_time:
logging.warning(f"Delay time {interval_time*1000:.2f}ms after {delay_repeat_time} frames")
delay_repeat_time_count = 0
time.sleep(interval_time)
# 写出
output_fifos = [mask_fifo_path, rgb_mask_fifo_path]
for fifo, mask in zip(output_fifos, masks):
fd_mask = os.open(fifo, os.O_WRONLY)
os.write(fd_mask, mask.tobytes())
os.close(fd_mask)
time_spent = (time.time() - since) * 1000
logging.info(f'Total time is: {time_spent:.2f} ms')
if time_spent > 200:
logging.warning(f'警告预测超时,预测耗时超过了200ms,The prediction time is {time_spent:.2f} ms.')
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='主程序')
parser.add_argument('-oc', default=False, action='store_true', help='只进行RGB彩色预测 only rgb', required=False)
parser.add_argument('-os', default=False, action='store_true', help='只进行光谱预测 only spec', required=False)
parser.add_argument('-m', default=False, action='store_true', help='if merge the two masks', required=False)
parser.add_argument('-d', default=False, action='store_true', help='是否使用DEBUG模式', required=False)
parser.add_argument('-dt', default=None, help='delay time', required=False)
parser.add_argument('-df', default=None, help='delay occours after how many frames', required=False)
args = parser.parse_args()
# fifo 参数
img_fifo_path = '/tmp/dkimg.fifo'
rgb_fifo_path = '/tmp/dkrgb.fifo'
# mask fifo
mask_fifo_path = '/tmp/dkmask.fifo'
rgb_mask_fifo_path = '/tmp/dkmask_rgb.fifo'
# logging相关
file_handler = logging.FileHandler(os.path.join(Config.root_dir, '.tobacco_algorithm.log'))
file_handler.setLevel(logging.DEBUG if args.d else logging.WARNING)
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setLevel(logging.DEBUG if args.d else logging.WARNING)
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[file_handler, console_handler], level=logging.DEBUG)
main(only_spec=args.os, only_color=args.oc, if_merge=args.m, interval_time=args.dt, delay_repeat_time=args.df)