mirror of
https://github.com/NanjingForestryUniversity/supermachine-tobacco.git
synced 2025-11-08 14:23:55 +00:00
711 lines
14 KiB
Plaintext
711 lines
14 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"# 训练像素模型\n",
|
|
"用这个文件可以训练出需要使用的光谱像素点模型"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"C:\\Users\\FEIJINTI\\miniconda3\\envs\\deepo\\lib\\site-packages\\tqdm\\auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
|
" from .autonotebook import tqdm as notebook_tqdm\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"import pickle\n",
|
|
"from utils import read_envi_ascii\n",
|
|
"from config import Config\n",
|
|
"from models import ManualTree"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"# 一些变量"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"outputs": [],
|
|
"source": [
|
|
"data_path = r'data/envi20220802.txt'\n",
|
|
"name_dict = {'tobacco': 1, 'yantou':2, 'kazhi':3, 'bomo':4, 'jiaodai':5, 'background':0}"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"# 构建数据集"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"outputs": [],
|
|
"source": [
|
|
"data = read_envi_ascii(data_path)"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"zibian (569, 448)\n",
|
|
"tobacco (1457, 448)\n",
|
|
"yantou (354, 448)\n",
|
|
"kazhi (449, 448)\n",
|
|
"bomo (1154, 448)\n",
|
|
"jiaodai (566, 448)\n",
|
|
"background (1235, 448)\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"_ = [print(class_name, d.shape) for class_name, d in data.items()]"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"outputs": [],
|
|
"source": [
|
|
"data_x = [d for class_name, d in data.items() if class_name in name_dict.keys()]\n",
|
|
"data_y = [np.ones((d.shape[0], ))*name_dict[class_name] for class_name, d in data.items() if class_name in name_dict.keys()]\n",
|
|
"data_x, data_y = np.concatenate(data_x), np.concatenate(data_y)"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## 取出需要的22个特征谱段"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"这些是现在的数据: (5215, 448) (5215,)\n",
|
|
"截取其中需要的部分后: (5215, 22) (5215,)\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(\"这些是现在的数据: \", data_x.shape, data_y.shape)\n",
|
|
"data_x_cut = data_x[..., Config.bands]\n",
|
|
"print(\"截取其中需要的部分后: \", data_x_cut.shape, data_y.shape)"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## 进行样本平衡"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"这是重采样后的数据: (8742, 22) (8742,)\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"from imblearn.over_sampling import RandomOverSampler\n",
|
|
"ros = RandomOverSampler(random_state=0)\n",
|
|
"x_resampled, y_resampled = ros.fit_resample(data_x_cut, data_y)\n",
|
|
"print('这是重采样后的数据: ', x_resampled.shape, y_resampled.shape)"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"# 进行模型训练\n",
|
|
"分出一部分数据进行训练"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"outputs": [],
|
|
"source": [
|
|
"from models import DecisionTree\n",
|
|
"from sklearn.model_selection import train_test_split"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"outputs": [],
|
|
"source": [
|
|
"train_x, test_x, train_y, test_y = train_test_split(x_resampled, y_resampled, test_size=0.2)"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"outputs": [],
|
|
"source": [
|
|
"tree = DecisionTree(class_weight={1:20})"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"outputs": [],
|
|
"source": [
|
|
"tree = tree.fit(train_x, train_y)"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"# 模型评估"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## 多分类精度"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"outputs": [],
|
|
"source": [
|
|
"pred_y = tree.predict(test_x)"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 15,
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" precision recall f1-score support\n",
|
|
"\n",
|
|
" 0.0 1.00 1.00 1.00 312\n",
|
|
" 1.0 0.98 0.97 0.98 289\n",
|
|
" 2.0 0.97 1.00 0.99 312\n",
|
|
" 3.0 0.95 0.99 0.97 278\n",
|
|
" 4.0 0.98 0.92 0.95 288\n",
|
|
" 5.0 0.98 0.98 0.98 270\n",
|
|
"\n",
|
|
" accuracy 0.98 1749\n",
|
|
" macro avg 0.98 0.98 0.98 1749\n",
|
|
"weighted avg 0.98 0.98 0.98 1749\n",
|
|
"\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"from sklearn.metrics import classification_report\n",
|
|
"\n",
|
|
"print(classification_report(y_pred=pred_y, y_true=test_y))"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## 二分类精度"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 16,
|
|
"outputs": [],
|
|
"source": [
|
|
"test_y[test_y <= 1] = 0\n",
|
|
"test_y[test_y > 1] = 1\n",
|
|
"pred_y = tree.predict_bin(test_x)"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 17,
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" precision recall f1-score support\n",
|
|
"\n",
|
|
" 0.0 1.00 1.00 1.00 598\n",
|
|
" 1.0 1.00 1.00 1.00 1151\n",
|
|
"\n",
|
|
" accuracy 1.00 1749\n",
|
|
" macro avg 1.00 1.00 1.00 1749\n",
|
|
"weighted avg 1.00 1.00 1.00 1749\n",
|
|
"\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(classification_report(y_true=pred_y, y_pred=pred_y))"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"# 模型保存"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 18,
|
|
"outputs": [],
|
|
"source": [
|
|
"import datetime\n",
|
|
"\n",
|
|
"path = datetime.datetime.now().strftime(f\"models/pixel_%Y-%m-%d_%H-%M.model\")\n",
|
|
"with open(path, 'wb') as f:\n",
|
|
" pickle.dump(tree, f)"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"outputs": [],
|
|
"source": [],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"outputs": [],
|
|
"source": [
|
|
"from models import DecisionTree\n",
|
|
"from sklearn.model_selection import train_test_split"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"outputs": [],
|
|
"source": [
|
|
"train_x, test_x, train_y, test_y = train_test_split(x_resampled, y_resampled, test_size=0.2)"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"outputs": [],
|
|
"source": [
|
|
"tree = DecisionTree(class_weight={1:20})"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"outputs": [],
|
|
"source": [
|
|
"tree = tree.fit(train_x, train_y)"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"# 模型评估"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## 多分类精度"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"outputs": [],
|
|
"source": [
|
|
"pred_y = tree.predict(test_x)"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" precision recall f1-score support\n",
|
|
"\n",
|
|
" 0.0 1.00 1.00 1.00 304\n",
|
|
" 1.0 0.97 0.98 0.97 275\n",
|
|
" 2.0 0.98 1.00 0.99 297\n",
|
|
" 3.0 0.95 0.99 0.97 293\n",
|
|
" 4.0 0.98 0.91 0.95 316\n",
|
|
" 5.0 0.98 0.98 0.98 264\n",
|
|
"\n",
|
|
" accuracy 0.98 1749\n",
|
|
" macro avg 0.98 0.98 0.98 1749\n",
|
|
"weighted avg 0.98 0.98 0.98 1749\n",
|
|
"\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"from sklearn.metrics import classification_report\n",
|
|
"\n",
|
|
"print(classification_report(y_pred=pred_y, y_true=test_y))"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## 二分类精度"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 19,
|
|
"outputs": [],
|
|
"source": [
|
|
"test_y[test_y <= 1] = 0\n",
|
|
"test_y[test_y > 1] = 1\n",
|
|
"pred_y = tree.predict_bin(test_x)"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 20,
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" precision recall f1-score support\n",
|
|
"\n",
|
|
" 0.0 1.00 1.00 1.00 582\n",
|
|
" 1.0 1.00 1.00 1.00 1167\n",
|
|
"\n",
|
|
" accuracy 1.00 1749\n",
|
|
" macro avg 1.00 1.00 1.00 1749\n",
|
|
"weighted avg 1.00 1.00 1.00 1749\n",
|
|
"\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(classification_report(y_true=pred_y, y_pred=pred_y))"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"# 模型保存"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 22,
|
|
"outputs": [],
|
|
"source": [
|
|
"import datetime\n",
|
|
"\n",
|
|
"path = datetime.datetime.now().strftime(f\"models/pixel_%Y-%m-%d_%H-%M.model\")\n",
|
|
"with open(path, 'wb') as f:\n",
|
|
" pickle.dump(tree, f)"
|
|
],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"outputs": [],
|
|
"source": [],
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
}
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 2
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython2",
|
|
"version": "2.7.6"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 0
|
|
} |