mirror of
https://github.com/NanjingForestryUniversity/supermachine-tobacco.git
synced 2025-11-08 14:23:55 +00:00
106 lines
4.5 KiB
Python
Executable File
106 lines
4.5 KiB
Python
Executable File
import os
|
||
import time
|
||
from queue import Queue
|
||
|
||
import numpy as np
|
||
from matplotlib import pyplot as plt
|
||
|
||
import models
|
||
import transmit
|
||
|
||
from config import Config
|
||
from models import RgbDetector, SpecDetector
|
||
import cv2
|
||
|
||
|
||
def main():
|
||
spec_detector = SpecDetector(blk_model_path=Config.blk_model_path, pixel_model_path=Config.pixel_model_path)
|
||
rgb_detector = RgbDetector(tobacco_model_path=Config.rgb_tobacco_model_path,
|
||
background_model_path=Config.rgb_background_model_path)
|
||
total_len = Config.nRows * Config.nCols * Config.nBands * 4 # float型变量, 4个字节
|
||
total_rgb = Config.nRgbRows * Config.nRgbCols * Config.nRgbBands * 1 # int型变量
|
||
if not os.access(img_fifo_path, os.F_OK):
|
||
os.mkfifo(img_fifo_path, 0o777)
|
||
if not os.access(rgb_fifo_path, os.F_OK):
|
||
os.mkfifo(rgb_fifo_path, 0o777)
|
||
if not os.access(mask_fifo_path, os.F_OK):
|
||
os.mkfifo(mask_fifo_path, 0o777)
|
||
|
||
# 进行补偿buffer的开启
|
||
if Config.offset_vertical < 0:
|
||
# 纵向的补偿小于0,那就意味着光谱图要上移才能补上,那么我们应该补偿SPEC相机的全 0 图像
|
||
conserve_part = np.zeros((abs(Config.offset_vertical) // 4, Config.nRows, Config.nBands))
|
||
elif Config.offset_vertical > 0:
|
||
# 纵向的补偿小于0,说明光谱图下移才能补上去,那么我们就需要补偿RGB相机的全 0 图像
|
||
conserve_part = np.zeros(abs(Config.offset_vertical), Config.nRgbRows, Config.nRgbBands)
|
||
while True:
|
||
fd_img = os.open(img_fifo_path, os.O_RDONLY)
|
||
fd_rgb = os.open(rgb_fifo_path, os.O_RDONLY)
|
||
# spec data read
|
||
data = os.read(fd_img, total_len)
|
||
if len(data) < 3:
|
||
threshold = int(float(data))
|
||
Config.spec_size_threshold = threshold
|
||
print("[INFO] Get spec threshold: ", threshold)
|
||
else:
|
||
data_total = data
|
||
os.close(fd_img)
|
||
# rgb data read
|
||
rgb_data = os.read(fd_rgb, total_rgb)
|
||
if len(rgb_data) < 3:
|
||
rgb_threshold = int(float(rgb_data))
|
||
Config.rgb_size_threshold = rgb_threshold
|
||
print("[INFO] Get rgb threshold", rgb_threshold)
|
||
continue
|
||
else:
|
||
rgb_data_total = rgb_data
|
||
os.close(fd_rgb)
|
||
# 识别
|
||
t1 = time.time()
|
||
img_data = np.frombuffer(data_total, dtype=np.float32).reshape((Config.nRows, Config.nBands, -1))\
|
||
.transpose(0, 2, 1)
|
||
rgb_data = np.frombuffer(rgb_data_total, dtype=np.uint8).reshape((Config.nRgbRows, Config.nRgbCols, -1))
|
||
|
||
# OFFSET compensate
|
||
if Config.offset_vertical < 0:
|
||
# 纵向的补偿小于0,那就意味着光谱图要上移才能补上,那么我们应该补偿SPEC相机的全 0 图像
|
||
new_conserve_part, real_part = img_data[:abs(Config.offset_vertical) // 4, ...],\
|
||
img_data[abs(Config.offset_vertical) // 4:, ...]
|
||
img_data = np.concatenate([real_part, conserve_part], axis=0)
|
||
conserve_part = new_conserve_part
|
||
elif Config.offset_vertical > 0:
|
||
# 纵向的补偿小于0,说明光谱图下移才能补上去,那么我们就需要补偿RGB相机的全 0 图像
|
||
new_conserve_part, real_part = rgb_data[:abs(Config.offset_vertical), ...],\
|
||
rgb_data[abs(Config.offset_vertical):, ...]
|
||
rgb_data = np.concatenate([real_part, conserve_part], axis=0)
|
||
conserve_part = new_conserve_part
|
||
# 光谱识别
|
||
mask_spec = spec_detector.predict(img_data)
|
||
# rgb识别
|
||
mask_rgb = rgb_detector.predict(rgb_data)
|
||
# 结果合并
|
||
mask_result = (mask_spec | mask_rgb).astype(np.uint8)
|
||
|
||
# control the size of the output masks
|
||
masks = [cv2.resize(mask.astype(np.uint8), Config.target_size) for mask in [mask_result, ]]
|
||
# 写出
|
||
output_fifos = [mask_fifo_path, ]
|
||
for fifo, mask in zip(output_fifos, masks):
|
||
fd_mask = os.open(fifo, os.O_WRONLY)
|
||
os.write(fd_mask, mask.tobytes())
|
||
os.close(fd_mask)
|
||
t3 = time.time()
|
||
print(f'total time is:{t3 - t1}')
|
||
|
||
|
||
if __name__ == '__main__':
|
||
# 相关参数
|
||
img_fifo_path = "/tmp/dkimg.fifo"
|
||
rgb_fifo_path = "/tmp/dkrgb.fifo"
|
||
|
||
mask_fifo_path = "/tmp/dkmask.fifo"
|
||
# 主函数
|
||
main()
|
||
# read_c_captures('/home/lzy/2022.7.15/tobacco_v1_0/', no_mask=True, nrows=256, ncols=1024,
|
||
# selected_bands=[380, 300, 200])
|