{ "cells": [ { "cell_type": "markdown", "source": [ "# 训练像素模型\n", "用这个文件可以训练出需要使用的光谱像素点模型" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 22, "outputs": [], "source": [ "import numpy as np\n", "import pickle\n", "from utils import read_envi_ascii\n", "from config import Config\n", "from models import ManualTree" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "# 一些变量" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 23, "outputs": [], "source": [ "data_path = r'data/envi20220802.txt'\n", "name_dict = {'tobacco': 1, 'yantou':2, 'kazhi':3, 'bomo':4, 'jiaodai':5, 'background':0}" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "# 构建数据集" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 24, "outputs": [], "source": [ "data = read_envi_ascii(data_path)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 25, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "zibian (569, 448)\n", "tobacco (1457, 448)\n", "yantou (354, 448)\n", "kazhi (449, 448)\n", "bomo (1154, 448)\n", "jiaodai (566, 448)\n", "background (1235, 448)\n" ] } ], "source": [ "_ = [print(class_name, d.shape) for class_name, d in data.items()]" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 26, "outputs": [], "source": [ "data_x = [d for class_name, d in data.items() if class_name in name_dict.keys()]\n", "data_y = [np.ones((d.shape[0], ))*name_dict[class_name] for class_name, d in data.items() if class_name in name_dict.keys()]\n", "data_x, data_y = np.concatenate(data_x), np.concatenate(data_y)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "## 取出需要的22个特征谱段" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 27, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "这些是现在的数据: (5215, 448) (5215,)\n", "截取其中需要的部分后: (5215, 22) (5215,)\n" ] } ], "source": [ "print(\"这些是现在的数据: \", data_x.shape, data_y.shape)\n", "data_x_cut = data_x[..., Config.bands]\n", "print(\"截取其中需要的部分后: \", data_x_cut.shape, data_y.shape)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "## 进行样本平衡" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 30, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "这是重采样后的数据: (8742, 22) (8742,)\n" ] } ], "source": [ "from imblearn.over_sampling import RandomOverSampler\n", "ros = RandomOverSampler(random_state=0)\n", "x_resampled, y_resampled = ros.fit_resample(data_x_cut, data_y)\n", "print('这是重采样后的数据: ', x_resampled.shape, y_resampled.shape)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "#" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }