import os import threading from multiprocessing import Process, Queue import time from utils import ImgQueue as ImgQueue import numpy as np from config import Config from models import SpecDetector, RgbDetector import typing import logging logging.basicConfig(format='%(asctime)s %(levelname)s %(name)s %(message)s', level=logging.WARNING) class Transmitter(object): def __init__(self): self.output = None def set_source(self, *args, **kwargs): """ 用于设置数据的来源,每个receiver仅允许有单个来源 :param args: :param kwargs: :return: """ raise NotImplementedError def set_output(self, output: ImgQueue): """ 设置单个输出源 :param output: :return: """ self.output = output def start(self, *args, **kwargs): """ 启动接收线程或进程 :param args: :param kwargs: :return: """ raise NotImplementedError def stop(self, *args, **kwargs): """ 停止接收线程或进程 :param args: :param kwargs: :return: """ raise NotImplementedError class BeforeAfterMethods: @classmethod def mask_preprocess(cls, mask: np.ndarray): logging.info(f"Send mask with size {mask.shape}") return mask.tobytes() @classmethod def spec_data_post_process(cls, data): if len(data) < 3: threshold = int(float(data)) logging.info(f"Get Spec threshold: {threshold}") return threshold else: spec_img = np.frombuffer(data, dtype=np.float32).\ reshape((Config.nRows, Config.nBands, -1)).transpose(0, 2, 1) logging.info(f"Get SPEC image with size {spec_img.shape}") return spec_img @classmethod def rgb_data_post_process(cls, data): if len(data) < 3: threshold = int(float(data)) logging.info(f"Get RGB threshold: {threshold}") return threshold else: rgb_img = np.frombuffer(data, dtype=np.uint8).reshape((Config.nRgbRows, Config.nRgbCols, -1)) logging.info(f"Get RGB img with size {rgb_img.shape}") return rgb_img class FifoReceiver(Transmitter): def __init__(self, fifo_path: str, output: ImgQueue, read_max_num: int, msg_queue=None): super().__init__() self._input_fifo_path = None self._output_queue = None self._msg_queue = msg_queue self._max_len = read_max_num self.set_source(fifo_path) self.set_output(output) self._need_stop = threading.Event() self._need_stop.clear() self._running_thread = None def set_source(self, fifo_path: str): if not os.access(fifo_path, os.F_OK): os.mkfifo(fifo_path, 0o777) self._input_fifo_path = fifo_path def set_output(self, output: ImgQueue): self._output_queue = output def start(self, post_process_func=None, name='fifo_receiver'): self._running_thread = threading.Thread(target=self._receive_thread_func, name=name, args=(post_process_func, )) self._running_thread.start() def stop(self): self._need_stop.set() def _receive_thread_func(self, post_process_func=None): """ 接收线程 :param post_process_func: :return: """ while not self._need_stop.is_set(): input_fifo = os.open(self._input_fifo_path, os.O_RDONLY) data = os.read(input_fifo, self._max_len) if post_process_func is not None: data = post_process_func(data) self._output_queue.safe_put(data) os.close(input_fifo) self._need_stop.clear() class FifoSender(Transmitter): def __init__(self, output_fifo_path: str, source: ImgQueue): super().__init__() self._input_source = None self._output_fifo_path = None self.set_source(source) self.set_output(output_fifo_path) self._need_stop = threading.Event() self._need_stop.clear() self._running_thread = None def set_source(self, source: ImgQueue): self._input_source = source def set_output(self, output_fifo_path: str): if not os.access(output_fifo_path, os.F_OK): os.mkfifo(output_fifo_path, 0o777) self._output_fifo_path = output_fifo_path def start(self, pre_process=None, name='fifo_receiver'): self._running_thread = threading.Thread(target=self._send_thread_func, name=name, args=(pre_process, )) self._running_thread.start() def stop(self): self._need_stop.set() def _send_thread_func(self, pre_process=None): """ 接收线程 :param pre_process: :return: """ while not self._need_stop.is_set(): if self._input_source.empty(): continue data = self._input_source.get() if pre_process is not None: data = pre_process(data) output_fifo = os.open(self._output_fifo_path, os.O_WRONLY) os.write(output_fifo, data) os.close(output_fifo) self._need_stop.clear() def __del__(self): self.stop() if self._running_thread is not None: self._running_thread.join() class CmdImgSplitMidware(Transmitter): """ 用于控制命令和图像的中间件 """ def __init__(self, subscribers: typing.Dict[str, ImgQueue], rgb_queue: ImgQueue, spec_queue: ImgQueue): super().__init__() self._rgb_queue = None self._spec_queue = None self._subscribers = None self._server_thread = None self.set_source(rgb_queue, spec_queue) self.set_output(subscribers) self.thread_stop = threading.Event() def set_source(self, rgb_queue: ImgQueue, spec_queue: ImgQueue): self._rgb_queue = rgb_queue self._spec_queue = spec_queue def set_output(self, output: typing.Dict[str, ImgQueue]): self._subscribers = output def start(self, name='CMD_thread'): self._server_thread = threading.Thread(target=self._cmd_control_service, name=name) self._server_thread.start() def stop(self): self.thread_stop.set() def _cmd_control_service(self): while not self.thread_stop.is_set(): # 判断是否有数据,如果没有数据那么就等下次吧,如果有数据来,必须保证同时 if self._rgb_queue.empty() or self._spec_queue.empty(): continue rgb_data = self._rgb_queue.get() spec_data = self._spec_queue.get() if isinstance(rgb_data, int) and isinstance(spec_data, int): # 看是不是命令需要执行如果是命令,就执行 Config.rgb_size_threshold = rgb_data Config.spec_size_threshold = spec_data continue elif isinstance(spec_data, np.ndarray) and isinstance(rgb_data, np.ndarray): # 如果是图片,交给预测的人 for name, subscriber in self._subscribers.items(): item = (spec_data, rgb_data) subscriber.safe_put(item) else: # 否则程序出现毁灭性问题,立刻崩 raise Exception("两个相机传回的数据没有对上") self.thread_stop.clear() class ImageSaver(Transmitter): """ 进行图片存储的中间件 """ def set_source(self, *args, **kwargs): pass def start(self, *args, **kwargs): pass def stop(self, *args, **kwargs): pass class ThreadDetector(Transmitter): def __init__(self, input_queue: ImgQueue, output_queue: ImgQueue): super().__init__() self._input_queue, self._output_queue = input_queue, output_queue self._spec_detector = SpecDetector(blk_model_path=Config.blk_model_path, pixel_model_path=Config.pixel_model_path) self._rgb_detector = RgbDetector(tobacco_model_path=Config.rgb_tobacco_model_path, background_model_path=Config.rgb_background_model_path) self._predict_thread = None self._thread_exit = threading.Event() def set_source(self, img_queue: ImgQueue): self._input_queue = img_queue def stop(self, *args, **kwargs): self._thread_exit.set() def start(self, name='predict_thread'): self._predict_thread = threading.Thread(target=self._predict_server, name=name) self._predict_thread.start() def predict(self, spec: np.ndarray, rgb: np.ndarray): logging.info(f'Detector get image with shape {spec.shape} and {rgb.shape}') t1 = time.time() mask = self._spec_detector.predict(spec) t2 = time.time() logging.info(f'Detector finish spec predict within {(t2 - t1) * 1000:.2f}ms') # rgb识别 mask_rgb = self._rgb_detector.predict(rgb) t3 = time.time() logging.info(f'Detector finish rgb predict within {(t3 - t2) * 1000:.2f}ms') # 结果合并 mask_result = (mask | mask_rgb).astype(np.uint8) mask_result = mask_result.repeat(Config.blk_size, axis=0).repeat(Config.blk_size, axis=1).astype(np.uint8) t4 = time.time() logging.info(f'Detector finish merge within {(t4 - t3) * 1000: .2f}ms') logging.info(f'Detector finish predict within {(time.time() -t1)*1000:.2f}ms') return mask_result def _predict_server(self): while not self._thread_exit.is_set(): if not self._input_queue.empty(): spec, rgb = self._input_queue.get() mask = self.predict(spec, rgb) self._output_queue.safe_put(mask) self._thread_exit.clear() class ProcessDetector(Transmitter): def __init__(self, input_queue: Queue, output_queue: Queue): super().__init__() self._input_queue, self._output_queue = input_queue, output_queue self._spec_detector = SpecDetector(blk_model_path=Config.blk_model_path, pixel_model_path=Config.pixel_model_path) self._rgb_detector = RgbDetector(tobacco_model_path=Config.rgb_tobacco_model_path, background_model_path=Config.rgb_background_model_path) self._predict_thread = None self._thread_exit = threading.Event() def set_source(self, img_queue: Queue): self._input_queue = img_queue def stop(self, *args, **kwargs): self._thread_exit.set() def start(self, name='predict_thread'): self._predict_thread = Process(target=self._predict_server, name=name, daemon=True) self._predict_thread.start() def predict(self, spec: np.ndarray, rgb: np.ndarray): logging.info(f'Detector get image with shape {spec.shape} and {rgb.shape}') t1 = time.time() mask = self._spec_detector.predict(spec) t2 = time.time() logging.info(f'Detector finish spec predict within {(t2 - t1) * 1000:.2f}ms') # rgb识别 mask_rgb = self._rgb_detector.predict(rgb) t3 = time.time() logging.info(f'Detector finish rgb predict within {(t3 - t2) * 1000:.2f}ms') # 结果合并 mask_result = (mask | mask_rgb).astype(np.uint8) mask_result = mask_result.repeat(Config.blk_size, axis=0).repeat(Config.blk_size, axis=1).astype(np.uint8) t4 = time.time() logging.info(f'Detector finish merge within {(t4 - t3) * 1000: .2f}ms') logging.info(f'Detector finish predict within {(time.time() -t1)*1000:.2f}ms') return mask_result def _predict_server(self): while not self._thread_exit.is_set(): if not self._input_queue.empty(): spec, rgb = self._input_queue.get() mask = self.predict(spec, rgb) self._output_queue.put(mask) self._thread_exit.clear()