import os import cv2 import time import numpy as np from config import Config from models import RgbDetector, SpecDetector def main(only_spec=False, only_color=False): spec_detector = SpecDetector(blk_model_path=Config.blk_model_path, pixel_model_path=Config.pixel_model_path) rgb_detector = RgbDetector(tobacco_model_path=Config.rgb_tobacco_model_path, background_model_path=Config.rgb_background_model_path) _, _ = spec_detector.predict(np.ones((Config.nRows, Config.nCols, Config.nBands), dtype=float)*0.4),\ rgb_detector.predict(np.ones((Config.nRgbRows, Config.nRgbCols, Config.nRgbBands), dtype=np.uint8)*40) total_len = Config.nRows * Config.nCols * Config.nBands * 4 # float型变量, 4个字节 total_rgb = Config.nRgbRows * Config.nRgbCols * Config.nRgbBands * 1 # int型变量 if not os.access(img_fifo_path, os.F_OK): os.mkfifo(img_fifo_path, 0o777) if not os.access(rgb_fifo_path, os.F_OK): os.mkfifo(rgb_fifo_path, 0o777) if not os.access(mask_fifo_path, os.F_OK): os.mkfifo(mask_fifo_path, 0o777) if not os.access(rgb_mask_fifo_path, os.F_OK): os.mkfifo(rgb_mask_fifo_path, 0o777) while True: fd_img = os.open(img_fifo_path, os.O_RDONLY) fd_rgb = os.open(rgb_fifo_path, os.O_RDONLY) # spec data read data = os.read(fd_img, total_len) if len(data) < 3: threshold = int(float(data)) Config.spec_size_threshold = threshold print("[INFO] Get spec threshold: ", threshold) else: data_total = data os.close(fd_img) # rgb data read rgb_data = os.read(fd_rgb, total_rgb) if len(rgb_data) < 3: rgb_threshold = int(float(rgb_data)) Config.rgb_size_threshold = rgb_threshold print("[INFO] Get rgb threshold", rgb_threshold) continue else: rgb_data_total = rgb_data os.close(fd_rgb) # 识别 t1 = time.time() img_data = np.frombuffer(data_total, dtype=np.float32).reshape((Config.nRows, Config.nBands, -1)) \ .transpose(0, 2, 1) rgb_data = np.frombuffer(rgb_data_total, dtype=np.uint8).reshape((Config.nRgbRows, Config.nRgbCols, -1)) if only_spec: # 光谱识别 mask_spec = spec_detector.predict(img_data) mask_rgb = np.zeros_like(mask_spec, dtype=np.uint8) elif only_color: # rgb识别 mask_rgb = rgb_detector.predict(rgb_data) mask_spec = np.zeros_like(mask_rgb, dtype=np.uint8) else: mask_spec = spec_detector.predict(img_data) mask_rgb = rgb_detector.predict(rgb_data) # control the size of the output masks masks = [cv2.resize(mask.astype(np.uint8), Config.target_size) for mask in [mask_spec, mask_rgb]] # 写出 output_fifos = [mask_fifo_path, rgb_mask_fifo_path] for fifo, mask in zip(output_fifos, masks): fd_mask = os.open(fifo, os.O_WRONLY) os.write(fd_mask, mask.tobytes()) os.close(fd_mask) t3 = time.time() print(f'total time is:{t3 - t1}') if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='主程序') parser.add_argument('-oc', default=False, action='store_true', help='只进行RGB彩色预测 only rgb', required=False) parser.add_argument('-os', default=False, action='store_true', help='只进行光谱预测 only spec', required=False) args = parser.parse_args() # fifo 参数 img_fifo_path = "/tmp/dkimg.fifo" rgb_fifo_path = "/tmp/dkrgb.fifo" # mask fifo mask_fifo_path = "/tmp/dkmask.fifo" rgb_mask_fifo_path = "/tmp/dkmask_rgb.fifo" main(only_spec=args.os, only_color=args.oc)