{ "cells": [ { "cell_type": "markdown", "source": [], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 1, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\FEIJINTI\\miniconda3\\envs\\deepo\\lib\\site-packages\\tqdm\\auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Training env\n" ] } ], "source": [ "import numpy as np\n", "import scipy\n", "from imblearn.under_sampling import RandomUnderSampler\n", "from models import AnonymousColorDetector\n", "from utils import read_labeled_img" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 2, "outputs": [], "source": [ "train_from_existed = False # 是否从现有数据训练,如果是的话,那就从dataset_file训练,否则就用data_dir里头的数据\n", "data_dir = \"data/dataset\" # 数据集,文件夹下必须包含`img`和`label`两个文件夹,放置相同文件名的图片和label\n", "dataset_file = \"data/dataset/dataset_2022-07-20_10-04.mat\"\n", "\n", "# color_dict = {(0, 0, 255): \"yangeng\", (255, 0, 0): 'beijing',(0, 255, 0): \"zibian\"} # 颜色对应的类别\n", "# color_dict = {(0, 0, 255): \"yangeng\"}\n", "color_dict = {(255, 0, 0): 'beijing'}\n", "# color_dict = {(0, 255, 0): \"zibian\"}\n", "label_index = {\"yangeng\": 1, \"beijing\": 0, \"zibian\":2} # 类别对应的序号\n", "show_samples = False # 是否展示样本\n", "\n", "# 定义一些训练量\n", "threshold = 2 # 正样本周围多大范围内的还算是正样本\n", "node_num = 20 # 如果使用ELM作为分类器物,有多少的节点\n", "negative_sample_num = None # None或者一个数字,对应生成的负样本数量" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "## 读取数据" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 3, "outputs": [], "source": [ "dataset = read_labeled_img(data_dir, color_dict=color_dict, is_ps_color_space=False)\n", "if show_samples:\n", " from utils import lab_scatter\n", " lab_scatter(dataset, class_max_num=30000, is_3d=True, is_ps_color_space=False)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "## 数据平衡化" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 4, "outputs": [], "source": [ "if len(dataset) > 1:\n", " rus = RandomUnderSampler(random_state=0)\n", " x_list, y_list = np.concatenate([v for k, v in dataset.items()], axis=0).tolist(), \\\n", " np.concatenate([np.ones((v.shape[0],)) * label_index[k] for k, v in dataset.items()], axis=0).tolist()\n", " x_resampled, y_resampled = rus.fit_resample(x_list, y_list)\n", " dataset = {\"inside\": np.array(x_resampled)}" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "## 模型训练" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 5, "outputs": [], "source": [ "# 对数据进行预处理\n", "x = np.concatenate([v for k, v in dataset.items()], axis=0)\n", "negative_sample_num = int(x.shape[0] * 1.2) if negative_sample_num is None else negative_sample_num\n", "model = AnonymousColorDetector()" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 6, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "147099it [31:23, 78.09it/s] \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0 1.00 1.00 1.00 44129\n", " 1 1.00 1.00 1.00 36775\n", "\n", " accuracy 1.00 80904\n", " macro avg 1.00 1.00 1.00 80904\n", "weighted avg 1.00 1.00 1.00 80904\n", "\n" ] } ], "source": [ "if train_from_existed:\n", " data = scipy.io.loadmat(dataset_file)\n", " x, y = data['x'], data['y'].ravel()\n", " model.fit(x, y=y, is_generate_negative=False, model_selection='dt')\n", "else:\n", " world_boundary = np.array([0, 0, 0, 255, 255, 255])\n", " model.fit(x, world_boundary, threshold, negative_sample_size=negative_sample_num, train_size=0.7,\n", " is_save_dataset=True, model_selection='dt')\n", "model.save()" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "## 模型的可视化" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 21, "outputs": [], "source": [ "model_path = \"dt_2022-07-21_17-19.model\"\n", "dataset_path = \"dataset_2022-07-21_17-19.mat\"" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 22, "outputs": [ { "ename": "FileNotFoundError", "evalue": "[Errno 2] No such file or directory: 'dataset_2022-07-21_17-19.mat'", "output_type": "error", "traceback": [ "\u001B[1;31m---------------------------------------------------------------------------\u001B[0m", "\u001B[1;31mFileNotFoundError\u001B[0m Traceback (most recent call last)", "File \u001B[1;32m~\\miniconda3\\envs\\deepo\\lib\\site-packages\\scipy\\io\\matlab\\mio.py:39\u001B[0m, in \u001B[0;36m_open_file\u001B[1;34m(file_like, appendmat, mode)\u001B[0m\n\u001B[0;32m 38\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[1;32m---> 39\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28;43mopen\u001B[39;49m\u001B[43m(\u001B[49m\u001B[43mfile_like\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mmode\u001B[49m\u001B[43m)\u001B[49m, \u001B[38;5;28;01mTrue\u001B[39;00m\n\u001B[0;32m 40\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m \u001B[38;5;167;01mIOError\u001B[39;00m \u001B[38;5;28;01mas\u001B[39;00m e:\n\u001B[0;32m 41\u001B[0m \u001B[38;5;66;03m# Probably \"not found\"\u001B[39;00m\n", "\u001B[1;31mFileNotFoundError\u001B[0m: [Errno 2] No such file or directory: 'dataset_2022-07-21_17-19.mat'", "\nDuring handling of the above exception, another exception occurred:\n", "\u001B[1;31mFileNotFoundError\u001B[0m Traceback (most recent call last)", "Input \u001B[1;32mIn [22]\u001B[0m, in \u001B[0;36m\u001B[1;34m()\u001B[0m\n\u001B[1;32m----> 1\u001B[0m data \u001B[38;5;241m=\u001B[39m \u001B[43mscipy\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mio\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mloadmat\u001B[49m\u001B[43m(\u001B[49m\u001B[43mdataset_path\u001B[49m\u001B[43m)\u001B[49m\n\u001B[0;32m 2\u001B[0m ground_truth \u001B[38;5;241m=\u001B[39m data[\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mx\u001B[39m\u001B[38;5;124m\"\u001B[39m][data[\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124my\u001B[39m\u001B[38;5;124m\"\u001B[39m]\u001B[38;5;241m.\u001B[39mravel()\u001B[38;5;241m==\u001B[39m\u001B[38;5;241m1\u001B[39m]\n", "File \u001B[1;32m~\\miniconda3\\envs\\deepo\\lib\\site-packages\\scipy\\io\\matlab\\mio.py:224\u001B[0m, in \u001B[0;36mloadmat\u001B[1;34m(file_name, mdict, appendmat, **kwargs)\u001B[0m\n\u001B[0;32m 87\u001B[0m \u001B[38;5;124;03m\"\"\"\u001B[39;00m\n\u001B[0;32m 88\u001B[0m \u001B[38;5;124;03mLoad MATLAB file.\u001B[39;00m\n\u001B[0;32m 89\u001B[0m \n\u001B[1;32m (...)\u001B[0m\n\u001B[0;32m 221\u001B[0m \u001B[38;5;124;03m 3.14159265+3.14159265j])\u001B[39;00m\n\u001B[0;32m 222\u001B[0m \u001B[38;5;124;03m\"\"\"\u001B[39;00m\n\u001B[0;32m 223\u001B[0m variable_names \u001B[38;5;241m=\u001B[39m kwargs\u001B[38;5;241m.\u001B[39mpop(\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mvariable_names\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;28;01mNone\u001B[39;00m)\n\u001B[1;32m--> 224\u001B[0m \u001B[38;5;28;01mwith\u001B[39;00m _open_file_context(file_name, appendmat) \u001B[38;5;28;01mas\u001B[39;00m f:\n\u001B[0;32m 225\u001B[0m MR, _ \u001B[38;5;241m=\u001B[39m mat_reader_factory(f, \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39mkwargs)\n\u001B[0;32m 226\u001B[0m matfile_dict \u001B[38;5;241m=\u001B[39m MR\u001B[38;5;241m.\u001B[39mget_variables(variable_names)\n", "File \u001B[1;32m~\\miniconda3\\envs\\deepo\\lib\\contextlib.py:135\u001B[0m, in \u001B[0;36m_GeneratorContextManager.__enter__\u001B[1;34m(self)\u001B[0m\n\u001B[0;32m 133\u001B[0m \u001B[38;5;28;01mdel\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39margs, \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mkwds, \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mfunc\n\u001B[0;32m 134\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[1;32m--> 135\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28;43mnext\u001B[39;49m\u001B[43m(\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mgen\u001B[49m\u001B[43m)\u001B[49m\n\u001B[0;32m 136\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m \u001B[38;5;167;01mStopIteration\u001B[39;00m:\n\u001B[0;32m 137\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m \u001B[38;5;167;01mRuntimeError\u001B[39;00m(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mgenerator didn\u001B[39m\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mt yield\u001B[39m\u001B[38;5;124m\"\u001B[39m) \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;28mNone\u001B[39m\n", "File \u001B[1;32m~\\miniconda3\\envs\\deepo\\lib\\site-packages\\scipy\\io\\matlab\\mio.py:17\u001B[0m, in \u001B[0;36m_open_file_context\u001B[1;34m(file_like, appendmat, mode)\u001B[0m\n\u001B[0;32m 15\u001B[0m \u001B[38;5;129m@contextmanager\u001B[39m\n\u001B[0;32m 16\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21m_open_file_context\u001B[39m(file_like, appendmat, mode\u001B[38;5;241m=\u001B[39m\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mrb\u001B[39m\u001B[38;5;124m'\u001B[39m):\n\u001B[1;32m---> 17\u001B[0m f, opened \u001B[38;5;241m=\u001B[39m \u001B[43m_open_file\u001B[49m\u001B[43m(\u001B[49m\u001B[43mfile_like\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mappendmat\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mmode\u001B[49m\u001B[43m)\u001B[49m\n\u001B[0;32m 18\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[0;32m 19\u001B[0m \u001B[38;5;28;01myield\u001B[39;00m f\n", "File \u001B[1;32m~\\miniconda3\\envs\\deepo\\lib\\site-packages\\scipy\\io\\matlab\\mio.py:45\u001B[0m, in \u001B[0;36m_open_file\u001B[1;34m(file_like, appendmat, mode)\u001B[0m\n\u001B[0;32m 43\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m appendmat \u001B[38;5;129;01mand\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m file_like\u001B[38;5;241m.\u001B[39mendswith(\u001B[38;5;124m'\u001B[39m\u001B[38;5;124m.mat\u001B[39m\u001B[38;5;124m'\u001B[39m):\n\u001B[0;32m 44\u001B[0m file_like \u001B[38;5;241m+\u001B[39m\u001B[38;5;241m=\u001B[39m \u001B[38;5;124m'\u001B[39m\u001B[38;5;124m.mat\u001B[39m\u001B[38;5;124m'\u001B[39m\n\u001B[1;32m---> 45\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28;43mopen\u001B[39;49m\u001B[43m(\u001B[49m\u001B[43mfile_like\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mmode\u001B[49m\u001B[43m)\u001B[49m, \u001B[38;5;28;01mTrue\u001B[39;00m\n\u001B[0;32m 46\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[0;32m 47\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m \u001B[38;5;167;01mIOError\u001B[39;00m(\n\u001B[0;32m 48\u001B[0m \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mReader needs file name or open file-like object\u001B[39m\u001B[38;5;124m'\u001B[39m\n\u001B[0;32m 49\u001B[0m ) \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01me\u001B[39;00m\n", "\u001B[1;31mFileNotFoundError\u001B[0m: [Errno 2] No such file or directory: 'dataset_2022-07-21_17-19.mat'" ] } ], "source": [ "data = scipy.io.loadmat(dataset_path)\n", "ground_truth = data[\"x\"][data[\"y\"].ravel()==1]" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "%matplotlib notebook\n", "model = AnonymousColorDetector(model_path)\n", "model.visualize(world_boundary = np.array([0, 0, 0, 255, 255, 255]),sample_size=5000,ground_truth=ground_truth)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.0" } }, "nbformat": 4, "nbformat_minor": 1 }