# -*- codeing = utf-8 -*- # Time : 2022/7/18 14:03 # @Auther : zhouchao # @File: models.py # @Software:PyCharm、 import datetime import pickle import cv2 import numpy as np import scipy.io from scipy.ndimage import binary_dilation from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split from config import Config from utils import lab_scatter, read_labeled_img, size_threshold deploy = True if not deploy: print("Training env") from tqdm import tqdm from elm import ELM class Detector(object): def predict(self, *args, **kwargs): raise NotImplementedError def load(self, *args, **kwargs): raise NotImplementedError def save(self, *args, **kwargs): raise NotImplementedError def fit(self, *args, **kwargs): raise NotImplementedError class AnonymousColorDetector(Detector): def __init__(self, file_path: str = None): super(AnonymousColorDetector, self).__init__() self.model = None self.model_type = 'None' if file_path is not None: self.load(file_path) def fit(self, x: np.ndarray, world_boundary: np.ndarray = None, threshold: float = None, is_generate_negative: bool = True, y: np.ndarray = None, model_selection='elm', negative_sample_size: int = 1000, train_size: float = 0.8, is_save_dataset=False, **kwargs): """ 拟合到指定的样本分布情况下,根据x进行分布的变化。 :param x: ndarray类型的正样本数据,给出的正样本形状为 n x feature_num :param world_boundary: 整个世界的边界,边界形状为 feature_num个下限, feature_num个上限 :param threshold: 与正样本之间的距离阈值大于多少则不认为是指定的样本类别 :param is_generate_negative: 是否生成负样本 :param y: 给出x对应的样本y :param model_selection: 模型的选择, in ['elm', 'decision tree'] :param negative_sample_size: 负样本的数量 :param train_size: 训练集的比例, float :param is_save_dataset: 是否保存数据集 :param kwargs: 与模型相对应的参数 :return: """ if model_selection == 'elm': node_num = kwargs.get('node_num', 10) self.model = ELM(input_size=x.shape[1], node_num=node_num, output_num=2, **kwargs) elif model_selection == 'dt': self.model = DecisionTreeClassifier(**kwargs) else: raise ValueError("你看看我要的是啥") self.model_type = model_selection if is_generate_negative: negative_samples = self.generate_negative_samples(x, world_boundary, threshold, sample_size=negative_sample_size) data_x, data_y = np.concatenate([x, negative_samples], axis=0), \ np.concatenate([np.ones(x.shape[0], dtype=int), np.zeros(negative_samples.shape[0], dtype=int)], axis=0) else: data_x, data_y = x, y if is_save_dataset: path = datetime.datetime.now().strftime("dataset_%Y-%m-%d_%H-%M.mat") scipy.io.savemat(path, {'x': data_x, 'y': data_y}) x_train, x_val, y_train, y_val = train_test_split(data_x, data_y, train_size=train_size, shuffle=True, stratify=data_y) self.model.fit(x_train, y_train) y_predict = self.model.predict(x_val) print(classification_report(y_true=y_val, y_pred=y_predict)) def predict(self, x, threshold_low=5, threshold_high=255): """ 输入rgb彩色图像 :param x: rgb彩色图像,np.ndarray :return: """ w, h = x.shape[1], x.shape[0] x = cv2.cvtColor(x, cv2.COLOR_RGB2LAB) x = x.reshape(w * h, -1) mask = (threshold_low < x[:, 0]) & (x[:, 0] < threshold_high) result = np.ones((w * h,), dtype=np.uint8) if np.any(mask): mask_result = self.model.predict(x[mask]) result[mask] = mask_result return result.reshape(h, w) @staticmethod def generate_negative_samples(x: np.ndarray, world_boundary: np.ndarray, threshold: float, sample_size: int): """ 根据正样本和世界边界生成负样本 :param x: ndarray类型的正样本数据,给出的正样本形状为 n x feature_num :param world_boundary: 整个世界的边界,边界形状为 feature_num个下限, feature_num个上限, array like :param threshold: 与正样本x之间的距离限制 :return: 负样本形状为:(sample_size, feature_num) """ feature_num = x.shape[1] negative_samples = np.zeros((sample_size, feature_num), dtype=x.dtype) generated_sample_num = 0 bar = tqdm(total=sample_size, ncols=100) while generated_sample_num <= sample_size: generated_data = np.random.uniform(world_boundary[:feature_num], world_boundary[feature_num:], size=(sample_size, feature_num)) for sample_idx in range(generated_data.shape[0]): sample = generated_data[sample_idx, :] in_threshold = np.any(np.sum(np.power(sample - x, 2), axis=1) < threshold) if not in_threshold: negative_samples[sample_idx, :] = sample generated_sample_num += 1 bar.update() if generated_sample_num >= sample_size: break bar.close() return negative_samples def pretreatment(self, x): return cv2.resize(x, (1024, 256)) def swell(self, x): return cv2.dilate(x, kernel=np.ones((3, 3), np.uint8)) def save(self): path = datetime.datetime.now().strftime(f"{self.model_type}_%Y-%m-%d_%H-%M.model") with open(path, 'wb') as f: pickle.dump((self.model_type, self.model), f) def load(self, file_path): with open(file_path, 'rb') as model_file: data = pickle.load(model_file) self.model_type, self.model = data def visualize(self, world_boundary: np.ndarray, sample_size: int, ground_truth=None, **kwargs): feature_num = world_boundary.shape[0] // 2 x = np.random.uniform(world_boundary[:feature_num], world_boundary[feature_num:], size=(sample_size, feature_num)) pred_y = self.model.predict(x) draw_dataset = {'Inside': x[pred_y == 1, :], 'Outside': x[pred_y == 0, :]} if ground_truth is not None: draw_dataset.update({'Given': ground_truth}) lab_scatter(draw_dataset, is_3d=True, is_ps_color_space=False, **kwargs) class ManualTree: # 初始化机器学习像素模型、深度学习像素模型、分块模型 def __init__(self, blk_model_path, pixel_model_path): self.pixel_model_ml = PixelModelML(pixel_model_path) self.blk_model = BlkModel(blk_model_path) # 区分烟梗和非黄色且非背景的杂质 @staticmethod def is_yellow(features): features = features.reshape((Config.nRows * Config.nCols), len(Config.selected_bands)) sum_x = features.sum(axis=1)[..., np.newaxis] rate = features / sum_x mask = ((rate < Config.is_yellow_max) & (rate > Config.is_yellow_min)) mask = np.all(mask, axis=1).reshape(Config.nRows, Config.nCols) return mask # 区分背景和黄色杂质 @staticmethod def is_black(feature, threshold): feature = feature.reshape((Config.nRows * Config.nCols), feature.shape[2]) mask = (feature <= threshold) mask = np.all(mask, axis=1).reshape(Config.nRows, Config.nCols) return mask # 预测出烟梗的mask def predict_tobacco(self, x: np.ndarray) -> np.ndarray: """ 预测出烟梗的mask :param x: 图像数据,形状是 nRows x nCols x nBands :return: bool类型的mask,是否为烟梗, True为烟梗 """ black_res = self.is_black(x[..., Config.black_yellow_bands], Config.is_black_threshold) yellow_res = self.is_yellow(x[..., Config.black_yellow_bands]) yellow_things = (~black_res) & yellow_res x_yellow = x[yellow_things, ...] tobacco = self.pixel_model_ml.predict(x_yellow[..., Config.green_bands]) yellow_things[yellow_things] = tobacco return yellow_things # 预测出杂质的机器学习像素模型 def pixel_predict_ml_dilation(self, data, iteration) -> np.ndarray: """ 预测出杂质的位置mask :param data: 图像数据,形状是 nRows x nCols x nBands :param iteration: 膨胀的次数 :return: bool类型的mask,是否为杂质, True为杂质 """ black_res = self.is_black(data[..., Config.black_yellow_bands], Config.is_black_threshold) yellow_res = self.is_yellow(data[..., Config.black_yellow_bands]) # non_yellow_things为异色杂质 non_yellow_things = (~black_res) & (~yellow_res) # yellow_things为黄色物体(烟梗+杂质) yellow_things = (~black_res) & yellow_res # x_yellow为挑出的黄色物体 x_yellow = data[yellow_things, ...] if x_yellow.shape[0] == 0: return non_yellow_things else: tobacco = self.pixel_model_ml.predict(x_yellow[..., Config.green_bands]) > 0.5 non_yellow_things[yellow_things] = ~tobacco # 杂质mask中将背景赋值为0,将杂质赋值为1 non_yellow_things = non_yellow_things + 0 # 烟梗mask中将背景赋值为0,将烟梗赋值为2 yellow_things[yellow_things] = tobacco yellow_things = yellow_things + 0 yellow_things = binary_dilation(yellow_things, iterations=iteration) yellow_things = yellow_things + 0 yellow_things[yellow_things == 1] = 2 # 将杂质mask和烟梗mask相加,得到的mask中含有0(背景),1(杂质),2(烟梗),3(膨胀后的烟梗与杂质相加的部分) mask = non_yellow_things + yellow_things mask[mask == 0] = False mask[mask == 1] = True mask[mask == 2] = False mask[mask == 3] = False return mask # 预测出杂质的分块模型 def blk_predict(self, data): blk_result_array = self.blk_model.predict(data) return blk_result_array # 机器学习像素模型类 class PixelModelML: def __init__(self, pixel_model_path): with open(pixel_model_path, "rb") as f: self.dt = pickle.load(f) def predict(self, feature): pixel_result_array = self.dt.predict(feature) return pixel_result_array # 分块模型类 class BlkModel: def __init__(self, blk_model_path): self.rfc = None self.load(blk_model_path) @staticmethod def split_x(data: np.ndarray, blk_sz: int) -> list: """ Split the data into slices for classification.将数据划分为多个像素块,便于后续识别. ;param data: image data, shape (num_rows x ncols x num_channels) ;param blk_sz: block size ;param sensitivity: 最少有多少个杂物点能够被认为是杂物 ;return data_x, data_y: sliced data x (block_num x num_charnnels x blk_sz x blk_sz) """ x_list = [] for i in range(0, 256 // blk_sz): for j in range(0, 1024 // blk_sz): block_data = data[i * blk_sz: (i + 1) * blk_sz, j * blk_sz: (j + 1) * blk_sz, ...] x_list.append(block_data) return x_list def predict(self, data): data_blk = data data_blk = np.array(self.split_x(data_blk, blk_sz=Config.blk_size)) data_blk = data_blk.reshape((data_blk.shape[0]), -1) y_pred = self.rfc.predict(data_blk) y_pred[y_pred < 2] = 0 y_pred[y_pred > 1] = 1 blk_result_array = y_pred.reshape(256 // Config.blk_size, 1024 // Config.blk_size).repeat(Config.blk_size, axis=0).repeat( Config.blk_size, axis=1) return blk_result_array def load(self, model_path: str): with open(model_path, "rb") as f: self.rfc = pickle.load(f) class RgbDetector(Detector): def __init__(self, tobacco_model_path, background_model_path): self.background_detector = None self.tobacco_detector = None self.load(tobacco_model_path, background_model_path) def predict(self, rgb_data): rgb_data = self.tobacco_detector.pretreatment(rgb_data) # resize to the required size background = self.background_detector.predict(rgb_data) tobacco = self.tobacco_detector.predict(rgb_data) tobacco_d = self.tobacco_detector.swell(tobacco) # dilate the tobacco to remove the tobacco edge error high_s = cv2.cvtColor(rgb_data, cv2.COLOR_RGB2HSV)[..., 1] > Config.threshold_s non_tobacco_or_background = 1 - (background | tobacco_d) # 既非烟梗也非背景的区域 rgb_predict_result = high_s | non_tobacco_or_background # 高饱和度区域或者是双非区域都是杂质 mask_rgb = size_threshold(rgb_predict_result, Config.blk_size, Config.rgb_size_threshold) # 杂质大小限制,超过大小的才打 return mask_rgb def load(self, tobacco_model_path, background_model_path): self.tobacco_detector = AnonymousColorDetector(tobacco_model_path) self.background_detector = AnonymousColorDetector(background_model_path) def save(self, *args, **kwargs): pass def fit(self, *args, **kwargs): pass class SpecDetector(Detector): # 初始化机器学习像素模型、深度学习像素模型、分块模型 def __init__(self, blk_model_path, pixel_model_path): self.blk_model = None self.pixel_model_ml = None self.load(blk_model_path, pixel_model_path) def load(self, blk_model_path, pixel_model_path): self.pixel_model_ml = PixelModelML(pixel_model_path) self.blk_model = BlkModel(blk_model_path) def predict(self, img_data): pixel_predict_result = self.pixel_predict_ml_dilation(data=img_data, iteration=1) blk_predict_result = self.blk_predict(data=img_data) mask = (pixel_predict_result & blk_predict_result).astype(np.uint8) mask = size_threshold(mask, Config.blk_size, Config.spec_size_threshold) return mask def save(self, *args, **kwargs): pass def fit(self, *args, **kwargs): pass # 区分烟梗和非黄色且非背景的杂质 @staticmethod def is_yellow(features): features = features.reshape((Config.nRows * Config.nCols), len(Config.selected_bands)) sum_x = features.sum(axis=1)[..., np.newaxis] rate = features / sum_x mask = ((rate < Config.is_yellow_max) & (rate > Config.is_yellow_min)) mask = np.all(mask, axis=1).reshape(Config.nRows, Config.nCols) return mask # 区分背景和黄色杂质 @staticmethod def is_black(feature, threshold): feature = feature.reshape((Config.nRows * Config.nCols), feature.shape[2]) mask = (feature <= threshold) mask = np.all(mask, axis=1).reshape(Config.nRows, Config.nCols) return mask # 预测出烟梗的mask def predict_tobacco(self, x: np.ndarray) -> np.ndarray: """ 预测出烟梗的mask :param x: 图像数据,形状是 nRows x nCols x nBands :return: bool类型的mask,是否为烟梗, True为烟梗 """ black_res = self.is_black(x[..., Config.black_yellow_bands], Config.is_black_threshold) yellow_res = self.is_yellow(x[..., Config.black_yellow_bands]) yellow_things = (~black_res) & yellow_res x_yellow = x[yellow_things, ...] tobacco = self.pixel_model_ml.predict(x_yellow[..., Config.green_bands]) yellow_things[yellow_things] = tobacco return yellow_things # 预测出杂质的机器学习像素模型 def pixel_predict_ml_dilation(self, data, iteration) -> np.ndarray: """ 预测出杂质的位置mask :param data: 图像数据,形状是 nRows x nCols x nBands :param iteration: 膨胀的次数 :return: bool类型的mask,是否为杂质, True为杂质 """ black_res = self.is_black(data[..., Config.black_yellow_bands], Config.is_black_threshold) yellow_res = self.is_yellow(data[..., Config.black_yellow_bands]) # non_yellow_things为异色杂质 non_yellow_things = (~black_res) & (~yellow_res) # yellow_things为黄色物体(烟梗+杂质) yellow_things = (~black_res) & yellow_res # x_yellow为挑出的黄色物体 x_yellow = data[yellow_things, ...] if x_yellow.shape[0] == 0: return non_yellow_things else: tobacco = self.pixel_model_ml.predict(x_yellow[..., Config.green_bands]) > 0.5 non_yellow_things[yellow_things] = ~tobacco # 杂质mask中将背景赋值为0,将杂质赋值为1 non_yellow_things = non_yellow_things + 0 # 烟梗mask中将背景赋值为0,将烟梗赋值为2 yellow_things[yellow_things] = tobacco yellow_things = yellow_things + 0 yellow_things = binary_dilation(yellow_things, iterations=iteration) yellow_things = yellow_things + 0 yellow_things[yellow_things == 1] = 2 # 将杂质mask和烟梗mask相加,得到的mask中含有0(背景),1(杂质),2(烟梗),3(膨胀后的烟梗与杂质相加的部分) mask = non_yellow_things + yellow_things mask[mask == 0] = False mask[mask == 1] = True mask[mask == 2] = False mask[mask == 3] = False return mask # 预测出杂质的分块模型 def blk_predict(self, data): blk_result_array = self.blk_model.predict(data) return blk_result_array if __name__ == '__main__': data_dir = "data/dataset" color_dict = {(0, 0, 255): "yangeng"} dataset = read_labeled_img(data_dir, color_dict=color_dict, is_ps_color_space=False) ground_truth = dataset['yangeng'] detector = AnonymousColorDetector(file_path='models/dt_2022-07-19_14-38.model') # x = np.array([[10, 30, 20], [10, 35, 25], [10, 35, 36]]) boundary = np.array([0, 0, 0, 255, 255, 255]) # detector.fit(x, world_boundary, threshold=5, negative_sample_size=2000) detector.visualize(boundary, sample_size=50000, class_max_num=5000, ground_truth=ground_truth) temp = scipy.io.loadmat('data/dataset_2022-07-19_11-35.mat') x, y = temp['x'], temp['y'] dataset = {'inside': x[y.ravel() == 1, :], "outside": x[y.ravel() == 0, :]} lab_scatter(dataset, class_max_num=5000, is_3d=True, is_ps_color_space=False)