This commit is contained in:
FEIJINTI 2022-07-21 17:31:03 +08:00
parent f7c88d3c2a
commit f52c8943e1
3 changed files with 35 additions and 25 deletions

View File

@ -40,7 +40,7 @@
"color_dict = {(0, 0, 255): \"yangeng\", (255, 0, 0): 'beijing',(0, 255, 0): \"zibian\"} # 颜色对应的类别\n",
"# color_dict = {(0, 0, 255): \"yangeng\"}\n",
"# color_dict = {(255, 0, 0): 'beijing'}\n",
"color_dict = {(0, 255, 0): \"zibian\"}\n",
"# color_dict = {(0, 255, 0): \"zibian\"}\n",
"label_index = {\"yangeng\": 1, \"beijing\": 0, \"zibian\":2} # 类别对应的序号\n",
"show_samples = False # 是否展示样本\n",
"\n",

View File

@ -14,7 +14,7 @@ color_dict = {(0, 0, 255): "yangeng", (255, 0, 0): 'beijing', (0, 255, 0): "zibi
# color_dict = {(255, 0, 0): 'beijing'}
# color_dict = {(0, 255, 0): "zibian"}
label_index = {"yangeng": 1, "beijing": 0, "zibian": 2} # 类别对应的序号
show_samples = False # 是否展示样本
show_samples = True # 是否展示样本
# 定义一些训练量
threshold = 5 # 正样本周围多大范围内的还算是正样本

View File

@ -14,7 +14,7 @@
},
{
"cell_type": "code",
"execution_count": 44,
"execution_count": 17,
"outputs": [],
"source": [
"import datetime\n",
@ -25,7 +25,7 @@
"import numpy as np\n",
"import pickle\n",
"from sklearn.tree import DecisionTreeClassifier\n",
"%matplotlib notebook\n",
"# %matplotlib notebook\n",
"from main_test import virtual_main\n",
"from models import AnonymousColorDetector\n",
"from utils import lab_scatter"
@ -39,11 +39,11 @@
},
{
"cell_type": "code",
"execution_count": 45,
"execution_count": 18,
"outputs": [],
"source": [
"img_path = r\"C:\\Users\\FEIJINTI\\Desktop\\721\\zazhi\\Image_2022_0721_1351_38_946-002034.bmp\"\n",
"model_path = [\"models/beijing_dt_2022-07-21_16-44.model\", \"models/tobacco_dt_2022-07-21_16-30.model\",\"models/zibian_dt_2022-07-21_16-45.model\"]"
"model_path = [\"models/beijing_dt_2022-07-21_16-44.model\", \"models/tobacco_dt_2022-07-21_16-30.model\",\"models/zibian_dt_2022-07-21_16-45.model\",\"dt_2022-07-21_17-19.model\"]"
],
"metadata": {
"collapsed": false,
@ -54,7 +54,7 @@
},
{
"cell_type": "code",
"execution_count": 46,
"execution_count": 19,
"outputs": [],
"source": [
"img = cv2.imread(img_path)[:, :, ::-1]\n",
@ -71,11 +71,12 @@
},
{
"cell_type": "code",
"execution_count": 47,
"execution_count": 20,
"outputs": [],
"source": [
"t_detector = AnonymousColorDetector(file_path=model_path[1])\n",
"t_result = t_detector.predict(img).astype(np.uint8)"
"t_result = t_detector.predict(img).astype(np.uint8)\n",
"t_result = cv2.dilate(t_result, kernel = np.ones((3, 3), np.uint8))"
],
"metadata": {
"collapsed": false,
@ -86,7 +87,7 @@
},
{
"cell_type": "code",
"execution_count": 48,
"execution_count": 21,
"outputs": [],
"source": [
"z_detector = AnonymousColorDetector(file_path=model_path[2])\n",
@ -101,10 +102,11 @@
},
{
"cell_type": "code",
"execution_count": 49,
"execution_count": 22,
"outputs": [],
"source": [
"result = 1 - (b_result | t_result | z_result)"
"s_detector = AnonymousColorDetector(file_path=model_path[3])\n",
"s_result = s_detector.predict(img).astype(np.uint8)"
],
"metadata": {
"collapsed": false,
@ -115,7 +117,21 @@
},
{
"cell_type": "code",
"execution_count": 50,
"execution_count": 25,
"outputs": [],
"source": [
"result = 1 - (b_result | t_result)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 26,
"outputs": [
{
"data": {
@ -128,26 +144,20 @@
{
"data": {
"text/plain": "<IPython.core.display.HTML object>",
"text/html": "<div id='71e0e832-f293-40bc-9913-301125493d2e'></div>"
"text/html": "<div id='45f22664-39a5-478c-8758-331c7e98de1a'></div>"
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": "<matplotlib.image.AxesImage at 0x24e8faaa440>"
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fig,axs = plt.subplots(4,1)\n",
"fig,axs = plt.subplots(5,1)\n",
"axs[0].imshow(b_result)\n",
"axs[1].imshow(t_result)\n",
"axs[2].imshow(z_result)\n",
"axs[3].imshow(result)"
"axs[3].imshow(result)\n",
"axs[4].imshow(1-s_result)\n",
"plt.savefig(\"1.png\",dpi=900)"
],
"metadata": {
"collapsed": false,
@ -158,7 +168,7 @@
},
{
"cell_type": "code",
"execution_count": 50,
"execution_count": 24,
"outputs": [],
"source": [],
"metadata": {