数据分析

This commit is contained in:
FEIJINTI 2022-07-18 10:49:36 +08:00
parent e78fc9b8d8
commit b37114bed7
2 changed files with 211 additions and 116 deletions

File diff suppressed because one or more lines are too long

85
utils.py Normal file
View File

@ -0,0 +1,85 @@
# -*- codeing = utf-8 -*-
# Time : 2022/7/18 9:46
# @Auther : zhouchao
# @File: utils.py
# @Software:PyCharm
import glob
import os
import cv2
import numpy as np
from matplotlib import pyplot as plt
class MergeDict(dict):
def __init__(self):
super(MergeDict, self).__init__()
def merge(self, merged: dict):
for k, v in merged.items():
if k not in self.keys():
self.update({k: v})
else:
original = self.__getitem__(k)
new_value = np.concatenate([original, v], axis=0)
self.update({k: new_value})
return self
def read_labeled_img(dataset_dir: str, color_dict: dict, ext='.bmp') -> dict:
"""
根据dataset_dir下的文件创建数据集
:param dataset_dir: 文件夹名称文件夹内必须包含'label''label'两个文件夹并分别存放同名的图像与标签
:param color_dict: 进行标签图像的颜色查找
:param ext: 图片后缀名,默认为.bmp
:return: 字典形式的数据集{label: vector(n x 3)},vector为lab色彩空间
"""
img_names = [img_name for img_name in os.listdir(os.path.join(dataset_dir, 'label'))
if img_name.endswith(ext)]
total_dataset = MergeDict()
for img_name in img_names:
img_path, label_path = [os.path.join(dataset_dir, folder, img_name) for folder in ['img', 'label']]
# 读取图片和色彩空间转换
img = cv2.imread(img_path)
label_img = cv2.imread(label_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
# 从opencv的色彩空间到Photoshop的色彩空间
alpha, beta = np.array([100 / 255, 1, 1]), np.array([0, -128, -128])
img = img * alpha + beta
img = np.asarray(np.round(img, 0), dtype=int)
dataset = {label: img[np.all(label_img == color, axis=2)] for color, label in color_dict.items()}
total_dataset.merge(dataset)
return total_dataset
def lab_scatter(dataset: dict, class_max_num=None):
"""
在lab色彩空间内绘制3维数据分布情况
:param dataset: 字典形式的数据集{label: vector(n x 3)},vector为lab色彩空间
:param class_max_num: 每个类别最多画的样本数量默认不限制
:return: None
"""
# 观察色彩分布情况
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
for label, data in dataset.items():
if class_max_num is not None:
assert isinstance(class_max_num, int)
if data.shape[0] > class_max_num:
sample_idx = np.arange(data.shape[0])
sample_idx = np.random.choice(sample_idx, class_max_num)
data = data[sample_idx, :]
l, a, b = [data[:, i] for i in range(3)]
ax.scatter(a, b, l, label=label, alpha=0.1)
ax.set_xlim(-127, 127)
ax.set_ylim(-127, 127)
ax.set_zlim(0, 100)
plt.legend()
plt.show()
if __name__ == '__main__':
dataset = read_labeled_img("data/dataset", color_dict={(0, 0, 255): 1, (255, 0, 0): 2})
lab_scatter(dataset, class_max_num=2000)