mirror of
https://github.com/NanjingForestryUniversity/supermachine-tobacco.git
synced 2025-11-08 14:23:55 +00:00
修改了float类型报错
This commit is contained in:
parent
30041c1aed
commit
49b2ea4be7
12
main.py
12
main.py
@ -67,17 +67,17 @@ def main(only_spec=False, only_color=False):
|
|||||||
logging.error(f'毁灭性错误!收到的rgb数据长度为{len(rgb_data)}无法转化成指定形状 {e}')
|
logging.error(f'毁灭性错误!收到的rgb数据长度为{len(rgb_data)}无法转化成指定形状 {e}')
|
||||||
if only_spec:
|
if only_spec:
|
||||||
# 光谱识别
|
# 光谱识别
|
||||||
mask_spec = spec_detector.predict(img_data)
|
mask_spec = spec_detector.predict(img_data).astype(np.uint8)
|
||||||
mask_rgb = rgb_detector.predict(rgb_data)
|
_ = rgb_detector.predict(rgb_data)
|
||||||
mask_rgb = np.zeros_like(mask_spec, dtype=np.uint8)
|
mask_rgb = np.zeros_like(mask_spec, dtype=np.uint8)
|
||||||
elif only_color:
|
elif only_color:
|
||||||
# rgb识别
|
# rgb识别
|
||||||
mask_spec = spec_detector.predict(img_data)
|
_ = spec_detector.predict(img_data)
|
||||||
mask_rgb = rgb_detector.predict(rgb_data)
|
mask_rgb = rgb_detector.predict(rgb_data).astype(np.uint8)
|
||||||
mask_spec = np.zeros_like(mask_rgb, dtype=np.uint8)
|
mask_spec = np.zeros_like(mask_rgb, dtype=np.uint8)
|
||||||
else:
|
else:
|
||||||
mask_spec = spec_detector.predict(img_data)
|
mask_spec = spec_detector.predict(img_data).astype(np.uint8)
|
||||||
mask_rgb = rgb_detector.predict(rgb_data)
|
mask_rgb = rgb_detector.predict(rgb_data).astype(np.uint8)
|
||||||
# 进行喷阀的合并
|
# 进行喷阀的合并
|
||||||
masks = [utils.valve_expend(mask) for mask in [mask_spec, mask_rgb]]
|
masks = [utils.valve_expend(mask) for mask in [mask_spec, mask_rgb]]
|
||||||
# control the size of the output masks, 在resize前,图像的宽度是和喷阀对应的
|
# control the size of the output masks, 在resize前,图像的宽度是和喷阀对应的
|
||||||
|
|||||||
17
utils.py
17
utils.py
@ -162,7 +162,8 @@ def valve_merge(img: np.ndarray, merge_size: int = 2) -> np.ndarray:
|
|||||||
|
|
||||||
def valve_expend(img: np.ndarray) -> np.ndarray:
|
def valve_expend(img: np.ndarray) -> np.ndarray:
|
||||||
kernel = np.ones((1, 3), np.uint8)
|
kernel = np.ones((1, 3), np.uint8)
|
||||||
return cv2.dilate(img, kernel)
|
img = cv2.dilate(img, kernel, iterations=1)
|
||||||
|
return img
|
||||||
|
|
||||||
|
|
||||||
def read_envi_ascii(file_name, save_xy=False, hdr_file_name=None):
|
def read_envi_ascii(file_name, save_xy=False, hdr_file_name=None):
|
||||||
@ -221,11 +222,13 @@ def read_envi_ascii(file_name, save_xy=False, hdr_file_name=None):
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
color_dict = {(0, 0, 255): "yangeng", (255, 0, 0): "bejing", (0, 255, 0): "hongdianxian",
|
# color_dict = {(0, 0, 255): "yangeng", (255, 0, 0): "bejing", (0, 255, 0): "hongdianxian",
|
||||||
(255, 0, 255): "chengsebangbangtang", (0, 255, 255): "lvdianxian"}
|
# (255, 0, 255): "chengsebangbangtang", (0, 255, 255): "lvdianxian"}
|
||||||
dataset = read_labeled_img("data/dataset", color_dict=color_dict, is_ps_color_space=False)
|
# dataset = read_labeled_img("data/dataset", color_dict=color_dict, is_ps_color_space=False)
|
||||||
lab_scatter(dataset, class_max_num=20000, is_3d=False, is_ps_color_space=False)
|
# lab_scatter(dataset, class_max_num=20000, is_3d=False, is_ps_color_space=False)
|
||||||
# a = np.array([[1, 1, 0, 0, 1, 0, 0, 1], [0, 0, 1, 0, 0, 1, 1, 1]]).astype(np.uint8)
|
a = np.array([[1, 1, 0, 0, 1, 0, 0, 1], [0, 0, 1, 0, 0, 1, 1, 1]]).astype(np.uint8)
|
||||||
# a.repeat(3, axis=0)
|
# a.repeat(3, axis=0)
|
||||||
# b = valve_merge(a, 2)
|
# b = valve_merge(a, 2)
|
||||||
# print(b)
|
# print(b)
|
||||||
|
c = valve_expend(a)
|
||||||
|
print(c)
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user