mirror of
https://github.com/NanjingForestryUniversity/supermachine-tobacco.git
synced 2025-11-08 14:23:55 +00:00
模型训练保存与加载, 后台版
This commit is contained in:
parent
d612222752
commit
00a46f010b
@ -2,76 +2,76 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"# 模型的训练"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%% md\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# 模型的训练"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"from models import AnonymousColorDetector\n",
|
||||
"from utils import read_labeled_img"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"## 读取数据与构建数据集"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%% md\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## 读取数据与构建数据集"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data_dir = \"data/dataset\"\n",
|
||||
"color_dict = {(0, 0, 255): \"yangeng\"}\n",
|
||||
"dataset = read_labeled_img(data_dir, color_dict=color_dict, is_ps_color_space=False)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"## 模型训练"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%% md\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## 模型训练"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# 定义一些常量\n",
|
||||
@ -82,31 +82,29 @@
|
||||
"# 对数据进行预处理\n",
|
||||
"x = np.concatenate([v for k, v in dataset.items()], axis=0)\n",
|
||||
"negative_sample_num = x.shape[0] if negative_sample_num is None else negative_sample_num"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model = AnonymousColorDetector()"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model = AnonymousColorDetector()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"ename": "KeyboardInterrupt",
|
||||
@ -124,34 +122,28 @@
|
||||
],
|
||||
"source": [
|
||||
"model.fit(x, world_boundary, threshold, negative_sample_size=negative_sample_num, train_size=0.7)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 2
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython2",
|
||||
"version": "2.7.6"
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
"nbformat_minor": 1
|
||||
}
|
||||
41
02_classification.py
Normal file
41
02_classification.py
Normal file
@ -0,0 +1,41 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# # 模型的训练
|
||||
|
||||
# In[16]:
|
||||
|
||||
|
||||
import numpy as np
|
||||
|
||||
from models import AnonymousColorDetector
|
||||
from utils import read_labeled_img
|
||||
|
||||
# ## 读取数据与构建数据集
|
||||
|
||||
# In[17]:
|
||||
|
||||
|
||||
data_dir = "data/dataset"
|
||||
color_dict = {(0, 0, 255): "yangeng"}
|
||||
dataset = read_labeled_img(data_dir, color_dict=color_dict, is_ps_color_space=False)
|
||||
|
||||
# ## 模型训练
|
||||
|
||||
# In[18]:
|
||||
|
||||
|
||||
# 定义一些常量
|
||||
threshold = 5
|
||||
node_num = 20
|
||||
negative_sample_num = None # None或者一个数字
|
||||
world_boundary = np.array([0, 0, 0, 255, 255, 255])
|
||||
# 对数据进行预处理
|
||||
x = np.concatenate([v for k, v in dataset.items()], axis=0)
|
||||
negative_sample_num = int(x.shape[0] * 0.7) if negative_sample_num is None else negative_sample_num
|
||||
|
||||
model = AnonymousColorDetector()
|
||||
|
||||
model.fit(x, world_boundary, threshold, negative_sample_size=negative_sample_num, train_size=0.7)
|
||||
|
||||
model.save()
|
||||
@ -11,7 +11,7 @@ from elm import ELM
|
||||
|
||||
|
||||
class AnonymousColorDetector(object):
|
||||
def __init__(self):
|
||||
def __init__(self, file_path=None):
|
||||
self.model = None
|
||||
|
||||
def fit(self, x: np.ndarray, world_boundary: np.ndarray, threshold: float, model_selected: str = 'elm',
|
||||
@ -71,9 +71,16 @@ class AnonymousColorDetector(object):
|
||||
break
|
||||
return negative_samples
|
||||
|
||||
def save(self, file_path=None):
|
||||
self.model.save(file_path)
|
||||
|
||||
def load(self, file_path):
|
||||
self.model.load(file_path)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
detector = AnonymousColorDetector()
|
||||
x = np.array([[10, 30, 20], [10, 35, 25], [10, 35, 36]])
|
||||
world_boundary = np.array([0, -127, -127, 100, 127, 127])
|
||||
detector.fit(x, world_boundary, threshold=5, negative_sample_size=2000)
|
||||
detector.load('ELM_2022-07-18_17-01.mat')
|
||||
|
||||
Loading…
Reference in New Issue
Block a user