supermachine--tomato-passio.../20240627Actual_deployed/detector.py

55 lines
1.7 KiB
Python

import cv2
import numpy as np
import torch
from pathlib import Path
from models.common import DetectMultiBackend
from utils.dataloaders import LoadImages
from utils.general import (
check_img_size,
non_max_suppression,
scale_boxes,
xyxy2xywh,
)
from utils.torch_utils import select_device, smart_inference_mode
from utils.dataloaders import letterbox
@smart_inference_mode()
def run(
img, # numpy array
weights=Path(r'D:\porject\PY\20240627Actual_deployed\weights\best.pt'), # model path
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device="0", # cuda device, i.e. 0 or 0,1,2,3 or cpu
half=False, # use FP16 half-precision inference
):
"""Runs YOLOv5 detection inference on a numpy array and returns the number of detections."""
# Load model
device = select_device(device)
model = DetectMultiBackend(weights, device=device, fp16=half)
stride = model.stride
imgsz = check_img_size(imgsz, s=stride) # check image size
# Convert numpy array to tensor
img = letterbox(img, imgsz, stride=stride)[0]
img = img.transpose((2,0,1))
img = np.ascontiguousarray(img)
im = torch.from_numpy(img).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
# Inference
pred = model(im)
# NMS
pred = non_max_suppression(pred, conf_thres, iou_thres, max_det=max_det)
# Count detections
num_detections = sum([len(d) for d in pred if d is not None])
return num_detections