mirror of
https://github.com/NanjingForestryUniversity/supermachine--tomato-passion_fruit.git
synced 2025-11-09 23:03:58 +00:00
136 lines
6.1 KiB
Python
136 lines
6.1 KiB
Python
# -*- coding: utf-8 -*-
|
||
# @Time : 2024/4/20 18:45
|
||
# @Author : TG
|
||
# @File : main.py
|
||
# @Software: PyCharm
|
||
|
||
import sys
|
||
import os
|
||
|
||
import cv2
|
||
|
||
from root_dir import ROOT_DIR
|
||
from classifer import Spec_predict, Data_processing
|
||
# from classifer import ImageClassifier
|
||
import logging
|
||
from utils import Pipe
|
||
import numpy as np
|
||
from config import Config
|
||
|
||
def main(is_debug=False):
|
||
setting = Config()
|
||
file_handler = logging.FileHandler(os.path.join(ROOT_DIR, 'tomato.log'), encoding='utf-8')
|
||
file_handler.setLevel(logging.DEBUG if is_debug else logging.WARNING)
|
||
console_handler = logging.StreamHandler(sys.stdout)
|
||
console_handler.setLevel(logging.DEBUG if is_debug else logging.WARNING)
|
||
logging.basicConfig(format='%(asctime)s %(filename)s[line:%(lineno)d] - %(levelname)s - %(message)s',
|
||
handlers=[file_handler, console_handler],
|
||
level=logging.DEBUG)
|
||
#模型加载
|
||
detector = Spec_predict()
|
||
detector.load(path=setting.brix_model_path)
|
||
# classifier = ImageClassifier(model_path=setting.imgclassifier_model_path,
|
||
# class_indices_path=setting.imgclassifier_class_indices_path)
|
||
dp = Data_processing()
|
||
print('系统初始化中...')
|
||
#模型预热
|
||
#与qt_test测试时需要注释掉预热,模型接收尺寸为(25,30,13),qt_test发送的数据为(30,30,224),需要对数据进行切片(classifer.py第385行)
|
||
_ = detector.predict(np.ones((setting.n_spec_rows, setting.n_spec_cols, setting.n_spec_bands), dtype=np.uint16))
|
||
# _ = classifier.predict(np.ones((setting.n_rgb_rows, setting.n_rgb_cols, setting.n_rgb_bands), dtype=np.uint8))
|
||
# _, _, _, _, _ =dp.analyze_tomato(cv2.imread(str(setting.tomato_img_dir)))
|
||
# _, _, _, _, _ = dp.analyze_passion_fruit(cv2.imread(str(setting.passion_fruit_img_dir))
|
||
print('系统初始化完成')
|
||
|
||
rgb_receive_name = r'\\.\pipe\rgb_receive'
|
||
rgb_send_name = r'\\.\pipe\rgb_send'
|
||
spec_receive_name = r'\\.\pipe\spec_receive'
|
||
pipe = Pipe(rgb_receive_name, rgb_send_name, spec_receive_name)
|
||
rgb_receive, rgb_send, spec_receive = pipe.create_pipes(rgb_receive_name, rgb_send_name, spec_receive_name)
|
||
# 预热循环,只处理cmd为'YR'的数据
|
||
# 当接收到的第一个指令预热命令时,结束预热循环
|
||
while True:
|
||
# start_time00 = time.time()
|
||
data = pipe.receive_rgb_data(rgb_receive)
|
||
cmd, _ = pipe.parse_img(data)
|
||
# end_time00 = time.time()
|
||
# print(f'接收预热数据时间:{(end_time00 - start_time00) * 1000}毫秒')
|
||
if cmd == 'YR':
|
||
break
|
||
#主循环
|
||
q = 1
|
||
while True:
|
||
#RGB图像部分
|
||
# start_time = time.time()
|
||
images = []
|
||
cmd = None
|
||
#三个相机产生5张图,qt发送方顺序为上方相机3张,左右相机各1张
|
||
#实际使用时,并未对最后两张两侧相机所得结果进行统计,因此也可改为3(qt发送方顺序为上方相机3张)
|
||
for i in range(5):
|
||
# start_time1 = time.time()
|
||
data = pipe.receive_rgb_data(rgb_receive)
|
||
# end_time10 = time.time()
|
||
# print(f'接收第{q}组第{i}份RGB数据时间:{(end_time10 - start_time1) * 1000}毫秒')
|
||
|
||
# start_time11 = time.time()
|
||
cmd, img = pipe.parse_img(data)
|
||
#接收到的图像保存本地
|
||
# img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
||
# # cv2.imwrite(f'./{q}_{i}.bmp', img)
|
||
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||
|
||
# end_time1 = time.time()
|
||
# print(f'解析第{q}组第{i}份RGB数据时间:{(end_time1 - start_time11) * 1000}毫秒')
|
||
# print(f'接收第{q}组第{i}张RGB图时间:{(end_time1 - start_time1) * 1000}毫秒')
|
||
|
||
# 使用分类器进行预测
|
||
# prediction = classifier.predict(img)
|
||
# print(f'预测结果:{prediction}')
|
||
#默认全为有果
|
||
prediction = 1
|
||
if prediction == 1:
|
||
images.append(img)
|
||
else:
|
||
response = pipe.send_data(cmd='KO', brix=0, diameter=0, green_percentage=0, weigth=0, defect_num=0,
|
||
total_defect_area=0, rp=np.zeros((100, 100, 3), dtype=np.uint8))
|
||
logging.info("图像中无果,跳过此图像")
|
||
continue
|
||
|
||
if cmd not in ['TO', 'PF', 'YR', 'KO']:
|
||
logging.error(f'错误指令,指令为{cmd}')
|
||
continue
|
||
#Spec数据部分
|
||
spec = None
|
||
if cmd == 'PF':
|
||
# start_time2 = time.time()
|
||
spec_data = pipe.receive_spec_data(spec_receive)
|
||
# print(f'接收第{q}组光谱数据长度:{len(spec_data)}')
|
||
_, spec = pipe.parse_spec(spec_data)
|
||
# print(f'处理第{q}组光谱数据长度:{len(spec)}')
|
||
# print(spec.shape)
|
||
# print(f'解析第{q}组光谱数据时间:{(time.time() - start_time2) * 1000}毫秒')
|
||
# end_time2 = time.time()
|
||
# print(f'接收第{q}组光谱数据时间:{(end_time2 - start_time2) * 1000}毫秒')
|
||
#数据处理部分
|
||
# start_time3 = time.time()
|
||
if images: # 确保images不为空
|
||
response = dp.process_data(cmd, images, spec, pipe, detector)
|
||
# end_time3 = time.time()
|
||
# print(f'第{q}组处理时间:{(end_time3 - start_time3) * 1000}毫秒')
|
||
if response:
|
||
logging.info(f'处理成功,响应为: {response}')
|
||
else:
|
||
logging.error('处理失败')
|
||
else:
|
||
logging.error("没有有效的图像进行处理")
|
||
|
||
# end_time = time.time()
|
||
# print(f'第{q}组全流程时间:{(end_time - start_time) * 1000}毫秒')
|
||
q += 1
|
||
|
||
if __name__ == '__main__':
|
||
'''
|
||
python与qt采用windows下的命名管道进行通信,数据流按照约定的通信协议进行
|
||
数据处理逻辑为:连续接收5张RGB图,然后根据解析出的指令部分决定是否接收一张光谱图,然后进行处理,最后将处理得到的指标结果进行编码回传
|
||
'''
|
||
main(is_debug=False)
|