# -*- coding: utf-8 -*- # @Time : 2024/4/20 18:45 # @Author : TG # @File : main.py # @Software: PyCharm import sys import os import cv2 from root_dir import ROOT_DIR from classifer import Spec_predict, Data_processing # from classifer import ImageClassifier import logging from utils import Pipe import numpy as np import time def process_data(cmd: str, images: list, spec: any, dp: Data_processing, pipe: Pipe, detector: Spec_predict) -> bool: """ 处理指令 :param cmd: 指令类型 :param images: 图像数据列表 :param spec: 光谱数据 :param detector: 模型 :return: 是否处理成功 """ diameter_axis_list = [] max_defect_num = 0 # 初始化最大缺陷数量为0 max_total_defect_area = 0 # 初始化最大总像素数为0 for i, img in enumerate(images): if cmd == 'TO': # 番茄 diameter, green_percentage, number_defects, total_pixels, rp = dp.analyze_tomato(img) if i <= 2: diameter_axis_list.append(diameter) max_defect_num = max(max_defect_num, number_defects) max_total_defect_area = max(max_total_defect_area, total_pixels) if i == 1: rp_result = rp gp = round(green_percentage) elif cmd == 'PF': # 百香果 diameter, weight, number_defects, total_pixels, rp = dp.analyze_passion_fruit(img) if i <= 2: diameter_axis_list.append(diameter) max_defect_num = max(max_defect_num, number_defects) max_total_defect_area = max(max_total_defect_area, total_pixels) if i == 1: rp_result = rp weight = weight else: logging.error(f'错误指令,指令为{cmd}') return False diameter = round(sum(diameter_axis_list) / 3) if cmd == 'TO': brix = 0 weight = 0 response = pipe.send_data(cmd=cmd, brix=brix, diameter=diameter, green_percentage=gp, weight=weight, defect_num=max_defect_num, total_defect_area=max_total_defect_area, rp=rp_result) return response elif cmd == 'PF': green_percentage = 0 brix = detector.predict(spec) if diameter == 0: brix = 0 response = pipe.send_data(cmd=cmd, brix=brix, green_percentage=green_percentage, diameter=diameter, weight=weight, defect_num=max_defect_num, total_defect_area=max_total_defect_area, rp=rp_result) return response def main(is_debug=False): file_handler = logging.FileHandler(os.path.join(ROOT_DIR, 'tomato.log'), encoding='utf-8') file_handler.setLevel(logging.DEBUG if is_debug else logging.WARNING) console_handler = logging.StreamHandler(sys.stdout) console_handler.setLevel(logging.DEBUG if is_debug else logging.WARNING) logging.basicConfig(format='%(asctime)s %(filename)s[line:%(lineno)d] - %(levelname)s - %(message)s', handlers=[file_handler, console_handler], level=logging.DEBUG) #模型加载 detector = Spec_predict(ROOT_DIR/'models'/'passion_fruit_2.joblib') # classifier = ImageClassifier(ROOT_DIR/'models'/'resnet34_0619.pth', ROOT_DIR/'models'/'class_indices.json') dp = Data_processing() print('系统初始化中...') #模型预热 _ = detector.predict(np.ones((30, 30, 224), dtype=np.uint16)) # _ = classifier.predict(np.ones((224, 224, 3), dtype=np.uint8)) # _, _, _, _, _ =dp.analyze_tomato(cv2.imread(r'D:\project\supermachine--tomato-passion_fruit\20240529RGBtest3\data\tomato_img\bad\71.bmp')) # _, _, _, _, _ = dp.analyze_passion_fruit(cv2.imread(r'D:\project\supermachine--tomato-passion_fruit\20240529RGBtest3\data\passion_fruit_img\38.bmp')) print('系统初始化完成') rgb_receive_name = r'\\.\pipe\rgb_receive' rgb_send_name = r'\\.\pipe\rgb_send' spec_receive_name = r'\\.\pipe\spec_receive' pipe = Pipe(rgb_receive_name, rgb_send_name, spec_receive_name) rgb_receive, rgb_send, spec_receive = pipe.create_pipes(rgb_receive_name, rgb_send_name, spec_receive_name) # 预热循环,只处理cmd为'YR'的数据 # 当接收到的第一个指令预热命令时,结束预热循环 while True: # start_time00 = time.time() data = pipe.receive_rgb_data(rgb_receive) cmd, _ = pipe.parse_img(data) # end_time00 = time.time() # print(f'接收预热数据时间:{(end_time00 - start_time00) * 1000}毫秒') if cmd == 'YR': break #主循环 # q = 1 while True: #RGB图像部分 # start_time = time.time() images = [] cmd = None for _ in range(5): # start_time1 = time.time() data = pipe.receive_rgb_data(rgb_receive) # end_time10 = time.time() # print(f'接收第{q}组第{i}份RGB数据时间:{(end_time10 - start_time1) * 1000}毫秒') # start_time11 = time.time() cmd, img = pipe.parse_img(data) # end_time1 = time.time() # print(f'解析第{q}组第{i}份RGB数据时间:{(end_time1 - start_time11) * 1000}毫秒') # print(f'接收第{q}组第{i}张RGB图时间:{(end_time1 - start_time1) * 1000}毫秒') # 使用分类器进行预测 # prediction = classifier.predict(img) # print(f'预测结果:{prediction}') #默认全为有果 prediction = 1 if prediction == 1: images.append(img) else: response = pipe.send_data(cmd='KO', brix=0, diameter=0, green_percentage=0, weigth=0, defect_num=0, total_defect_area=0, rp=np.zeros((100, 100, 3), dtype=np.uint8)) logging.info("图像中无果,跳过此图像") continue if cmd not in ['TO', 'PF', 'YR', 'KO']: logging.error(f'错误指令,指令为{cmd}') continue #Spec数据部分 spec = None if cmd == 'PF': # start_time2 = time.time() spec_data = pipe.receive_spec_data(spec_receive) # print(f'接收第{q}组光谱数据长度:{len(spec_data)}') _, spec = pipe.parse_spec(spec_data) # print(f'处理第{q}组光谱数据长度:{len(spec)}') # print(spec.shape) # print(f'解析第{q}组光谱数据时间:{(time.time() - start_time2) * 1000}毫秒') # end_time2 = time.time() # print(f'接收第{q}组光谱数据时间:{(end_time2 - start_time2) * 1000}毫秒') #数据处理部分 # start_time3 = time.time() if images: # 确保images不为空 response = process_data(cmd, images, spec, dp, pipe, detector) end_time3 = time.time() # print(f'第{q}组处理时间:{(end_time3 - start_time3) * 1000}毫秒') if response: logging.info(f'处理成功,响应为: {response}') else: logging.error('处理失败') else: logging.error("没有有效的图像进行处理") # end_time = time.time() # print(f'第{q}组全流程时间:{(end_time - start_time) * 1000}毫秒') # q += 1 if __name__ == '__main__': ''' python与qt采用windows下的命名管道进行通信,数据流按照约定的通信协议进行 数据处理逻辑为:连续接收5张RGB图,然后根据解析出的指令部分决定是否接收一张光谱图,然后进行处理,最后将处理得到的指标结果进行编码回传 ''' main(is_debug=False)