import cv2 import numpy as np import torch from pathlib import Path from models.common import DetectMultiBackend from utils.dataloaders import LoadImages from utils.general import ( check_img_size, non_max_suppression, scale_boxes, xyxy2xywh, ) from utils.torch_utils import select_device, smart_inference_mode from utils.dataloaders import letterbox from config import Config as setting class Detector_to: def __init__(self, weights=Path(setting.tomato_model_path), device="", half=False): self.device = select_device(device) self.model = DetectMultiBackend(weights, device=self.device, fp16=half) self.stride = int(self.model.stride) # get stride from the model self.fp16 = half def run(self, img, imgsz=(640, 640), conf_thres=0.25, iou_thres=0.45, max_det=1000): """Runs YOLOv5 detection inference on a numpy array and returns the number of detections.""" imgsz = check_img_size(imgsz, s=self.stride) # check image size # Convert numpy array to tensor img = letterbox(img, imgsz, stride=self.stride)[0] # resize image to model expected size img = img.transpose((2, 0, 1)) # HWC to CHW img = np.ascontiguousarray(img) # make contiguous im = torch.from_numpy(img).to(self.model.device) im = im.half() if self.fp16 else im.float() # uint8 to fp16/32 im /= 255 # 0 - 255 to 0.0 - 1.0 if len(im.shape) == 3: im = im[None] # expand for batch dim # Inference pred = self.model(im) # NMS pred = non_max_suppression(pred, conf_thres, iou_thres, max_det=max_det) # Count detections num_detections = sum([len(d) for d in pred if d is not None]) return num_detections