# -*- coding: utf-8 -*- # @Time : 2024/4/20 18:45 # @Author : TG # @File : main.py # @Software: PyCharm import sys import os from root_dir import ROOT_DIR from classifer import Spec_predict, Data_processing import logging from utils import Pipe import numpy as np rgb_receive_name = r'\\.\pipe\rgb_receive' rgb_send_name = r'\\.\pipe\rgb_send' spec_receive_name = r'\\.\pipe\spec_receive' pipe = Pipe(rgb_receive_name, rgb_send_name, spec_receive_name) dp = Data_processing() rgb_receive, rgb_send, spec_receive = pipe.create_pipes(rgb_receive_name, rgb_send_name, spec_receive_name) def process_data(cmd: str, images: list, spec: any, detector: Spec_predict) -> bool: """ 处理指令 :param cmd: 指令类型 :param images: 图像数据列表 :param spec: 光谱数据 :param detector: 模型 :return: 是否处理成功 """ diameter_axis_list = [] max_defect_num = 0 # 初始化最大缺陷数量为0 max_total_defect_area = 0 # 初始化最大总像素数为0 for i, img in enumerate(images): if cmd == 'TO': # 番茄 diameter, green_percentage, number_defects, total_pixels, rp = dp.analyze_tomato(img) if i <= 2: diameter_axis_list.append(diameter) max_defect_num = max(max_defect_num, number_defects) max_total_defect_area = max(max_total_defect_area, total_pixels) if i == 1: rp_result = rp gp = round(green_percentage) elif cmd == 'PF': # 百香果 diameter, weigth, number_defects, total_pixels, rp = dp.analyze_passion_fruit(img) if i <= 2: diameter_axis_list.append(diameter) max_defect_num = max(max_defect_num, number_defects) max_total_defect_area = max(max_total_defect_area, total_pixels) if i == 1: rp_result = rp weigth = weigth else: logging.error(f'错误指令,指令为{cmd}') return False diameter = round(sum(diameter_axis_list) / 3) if cmd == 'TO': brix = 0 weigth = 0 response = pipe.send_data(cmd=cmd, brix=brix, diameter=diameter, green_percentage=gp, weigth=weigth, defect_num=max_defect_num, total_defect_area=max_total_defect_area, rp=rp_result) return response elif cmd == 'PF': green_percentage = 0 brix = detector.predict(spec) response = pipe.send_data(cmd=cmd, brix=brix, green_percentage=green_percentage, diameter=diameter, weigth=weigth, defect_num=max_defect_num, total_defect_area=max_total_defect_area, rp=rp_result) return response def main(is_debug=False): file_handler = logging.FileHandler(os.path.join(ROOT_DIR, 'tomato.log')) file_handler.setLevel(logging.DEBUG if is_debug else logging.WARNING) console_handler = logging.StreamHandler(sys.stdout) console_handler.setLevel(logging.DEBUG if is_debug else logging.WARNING) logging.basicConfig(format='%(asctime)s %(filename)s[line:%(lineno)d] - %(levelname)s - %(message)s', handlers=[file_handler, console_handler], level=logging.DEBUG) detector = Spec_predict(ROOT_DIR/'models'/'passion_fruit_2.joblib') while True: images = [] cmd = None for _ in range(5): data = pipe.receive_rgb_data(rgb_receive) cmd, img = pipe.parse_img(data) # print(cmd, img.shape) images.append(img) # print(len(images)) if cmd not in ['TO', 'PF']: logging.error(f'错误指令,指令为{cmd}') continue spec = None if cmd == 'PF': spec_data = pipe.receive_spec_data(spec_receive) _, spec = pipe.parse_spec(spec_data) # print(spec.shape) response = process_data(cmd, images, spec, detector) if response: logging.info(f'处理成功,响应为: {response}') else: logging.error('处理失败') if __name__ == '__main__': main(is_debug=False)