cotton_color/opencv_onnx.cpp

199 lines
7.3 KiB
C++

#include <opencv2/opencv.hpp>
#include <opencv2/dnn/dnn.hpp>
#include <iostream>
// Parameters
const float CONFIDENCE_THRESHOLD = 0.2; // Confidence threshold
const float NMS_THRESHOLD = 0.2; // Non-maximum suppression threshold
const int INPUT_WIDTH = 640; // Model input width
const int INPUT_HEIGHT = 640; // Model input height
// Detection structure
struct Detection {
cv::Rect box;
float confidence;
};
class Timer {
public:
Timer() : start_time(std::chrono::high_resolution_clock::now()) {}
// Restart the timer
void restart() {
start_time = std::chrono::high_resolution_clock::now();
}
// Get and print the time elapsed since last start
void printElapsedTime(const std::string& message) {
auto end_time = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed = end_time - start_time;
std::cout << message << ": " << elapsed.count() << " seconds" << std::endl;
// Restart the timer for the next measurement
start_time = end_time;
}
private:
std::chrono::high_resolution_clock::time_point start_time;
};
// Function to resize and pad the input image
cv::Mat resizeAndPad(const cv::Mat& image, int targetWidth, int targetHeight, int& padTop, int& padLeft, float& scale, const cv::Scalar& padColor) {
int originalWidth = image.cols;
int originalHeight = image.rows;
// Calculate scaling factor
scale = std::min((float)targetWidth / originalWidth, (float)targetHeight / originalHeight);
// New dimensions after scaling
int newWidth = static_cast<int>(originalWidth * scale);
int newHeight = static_cast<int>(originalHeight * scale);
// Resize the image
cv::Mat resizedImage;
cv::resize(image, resizedImage, cv::Size(newWidth, newHeight));
// Padding calculations
padTop = (targetHeight - newHeight) / 2;
int padBottom = targetHeight - newHeight - padTop;
padLeft = (targetWidth - newWidth) / 2;
int padRight = targetWidth - newWidth - padLeft;
// Add padding around the image (using gray color)
cv::Mat paddedImage;
cv::copyMakeBorder(resizedImage, paddedImage, padTop, padBottom, padLeft, padRight, cv::BORDER_CONSTANT, padColor);
return paddedImage;
}
// Function to create an image with only detected regions filled as white (rest black) in the original image size
cv::Mat createDetectionMask(const cv::Mat& originalImage, const std::vector<Detection>& detections, float scale, int padTop, int padLeft) {
// Create a black image with the same size as the original image
cv::Mat mask = cv::Mat::zeros(originalImage.size(), CV_8UC1); // Single channel for black and white mask
// Fill the detected regions with white
for (const auto& detection : detections) {
// Rescale the coordinates from the padded image back to the original image
int x = static_cast<int>((detection.box.x - padLeft) / scale);
int y = static_cast<int>((detection.box.y - padTop) / scale);
int w = static_cast<int>(detection.box.width / scale);
int h = static_cast<int>(detection.box.height / scale);
// Ensure coordinates are within the bounds of the original image
x = std::max(0, std::min(x, originalImage.cols - 1));
y = std::max(0, std::min(y, originalImage.rows - 1));
w = std::min(w, originalImage.cols - x);
h = std::min(h, originalImage.rows - y);
cv::rectangle(mask, cv::Rect(x, y, w, h), cv::Scalar(255), cv::FILLED); // White color for detections
}
return mask;
}
int main() {
// Model and image paths
std::string modelPath = "C:\\Users\\zjc\\Desktop\\dimo_11.14.onnx";
std::string imagePath = "C:\\Users\\zjc\\Desktop\\dimo.bmp";
Timer timer1;
// Load the model
cv::dnn::Net net = cv::dnn::readNetFromONNX(modelPath);
net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA); // Use CUDA backend
net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA); // Run on GPU
timer1.printElapsedTime("Time to load the model");
// Read the input image
timer1.restart();
cv::Mat image = cv::imread(imagePath);
if (image.empty()) {
std::cerr << "Could not read the image: " << imagePath << std::endl;
return -1;
}
// Set padding color (gray)
cv::Scalar padColor(128, 128, 128);
// Preprocess image and add padding
int padTop, padLeft;
float scale;
cv::Mat inputImage = resizeAndPad(image, INPUT_WIDTH, INPUT_HEIGHT, padTop, padLeft, scale, padColor);
// Prepare image for model input
cv::Mat blob = cv::dnn::blobFromImage(inputImage, 1 / 255.0, cv::Size(INPUT_WIDTH, INPUT_HEIGHT), cv::Scalar(0, 0, 0), true, false);
net.setInput(blob);
timer1.printElapsedTime("Time to preprocess image");
for (int j = 0; j < 1; j++) {
// Run inference
cv::Mat output = net.forward();
// Process output data
std::vector<Detection> detections;
float* data = (float*)output.data;
for (int i = 0; i < 25200; ++i) {
float confidence = data[i * 6 + 4]; // Confidence score
if (confidence >= CONFIDENCE_THRESHOLD) {
// Get bounding box coordinates
float cx = data[i * 6];
float cy = data[i * 6 + 1];
float w = data[i * 6 + 2];
float h = data[i * 6 + 3];
// Map to image coordinates
cx = cx * inputImage.cols / INPUT_WIDTH;
cy = cy * inputImage.rows / INPUT_HEIGHT;
w = w * inputImage.cols / INPUT_WIDTH;
h = h * inputImage.rows / INPUT_HEIGHT;
int left = static_cast<int>(cx - w / 2);
int top = static_cast<int>(cy - h / 2);
int width = static_cast<int>(w);
int height = static_cast<int>(h);
left = std::max(0, std::min(left, inputImage.cols - 1));
top = std::max(0, std::min(top, inputImage.rows - 1));
width = std::min(width, inputImage.cols - left);
height = std::min(height, inputImage.rows - top);
// Add detection to vector
detections.push_back({cv::Rect(left, top, width, height), confidence});
}
}
// Non-Maximum Suppression
std::vector<int> indices;
std::vector<cv::Rect> boxes;
std::vector<float> scores;
for (const auto& detection : detections) {
boxes.push_back(detection.box);
scores.push_back(detection.confidence);
}
cv::dnn::NMSBoxes(boxes, scores, CONFIDENCE_THRESHOLD, NMS_THRESHOLD, indices);
std::cout << "Number of detections after NMS: " << indices.size() << std::endl;
std::vector<Detection> finalDetections;
for (int idx : indices) {
finalDetections.push_back(detections[idx]);
}
// Create the mask for the detected regions (matching original image size)
cv::Mat detectionMask = createDetectionMask(image, finalDetections, scale, padTop, padLeft);
// Show the mask
cv::imshow("Detection Mask", detectionMask);
// Save the result as an image
std::string savepath = "C:\\Users\\zjc\\Desktop\\suspect_mask.png";
cv::imwrite(savepath, detectionMask);
timer1.printElapsedTime("Time to run inference");
}
cv::waitKey(0);
return 0;
}