mirror of
https://github.com/Karllzy/cotton_color.git
synced 2025-11-09 11:13:54 +00:00
将滴灌带分类更改为yolo格式,并添加export.py
This commit is contained in:
parent
e3d7d3fefe
commit
ba15b49cc2
98
DPL/dgd_class/export_11.19.py
Normal file
98
DPL/dgd_class/export_11.19.py
Normal file
@ -0,0 +1,98 @@
|
||||
import argparse
|
||||
import torch
|
||||
from torchvision import models
|
||||
from torch import nn
|
||||
import os
|
||||
import re
|
||||
|
||||
|
||||
def load_pytorch_model(model_path, num_classes, device):
|
||||
"""
|
||||
加载 PyTorch 模型,并设置最后的分类层。
|
||||
"""
|
||||
print(f"Loading PyTorch model from {model_path}...")
|
||||
model = models.resnet18(weights=None) # 使用 ResNet18 作为示例
|
||||
model.fc = nn.Linear(model.fc.in_features, num_classes) # 修改最后一层
|
||||
model.load_state_dict(torch.load(model_path, map_location=device, weights_only=True))
|
||||
model.to(device) # 将模型加载到指定设备
|
||||
model.eval()
|
||||
print("PyTorch model loaded successfully.")
|
||||
return model
|
||||
|
||||
|
||||
def export_to_onnx(model, onnx_path, img_size, batch_size, device):
|
||||
"""
|
||||
导出 PyTorch 模型为 ONNX 格式,自动递增文件名,并支持 GPU。
|
||||
"""
|
||||
# 确保 `onnx_path` 是一个具体的文件路径
|
||||
if not onnx_path.endswith('.onnx'):
|
||||
os.makedirs(onnx_path, exist_ok=True) # 创建文件夹
|
||||
base_dir = onnx_path
|
||||
else:
|
||||
base_dir = os.path.dirname(onnx_path) or '.' # 提取文件夹部分
|
||||
os.makedirs(base_dir, exist_ok=True)
|
||||
|
||||
# 自动递增文件名
|
||||
base_name = "model"
|
||||
extension = ".onnx"
|
||||
existing_files = [f for f in os.listdir(base_dir) if f.endswith(extension)]
|
||||
|
||||
# 使用正则匹配现有文件名
|
||||
pattern = re.compile(rf"^{base_name}_(\d+){extension}$")
|
||||
numbers = [
|
||||
int(match.group(1)) for f in existing_files if (match := pattern.match(f))
|
||||
]
|
||||
next_number = max(numbers, default=0) + 1 # 计算下一个编号
|
||||
final_name = f"{base_name}_{next_number}{extension}"
|
||||
final_path = os.path.join(base_dir, final_name)
|
||||
|
||||
print(f"Exporting model to ONNX format at {final_path}...")
|
||||
|
||||
# 创建虚拟输入张量,并将其移动到指定设备
|
||||
dummy_input = torch.randn(batch_size, 3, img_size, img_size, device=device)
|
||||
|
||||
# 导出 ONNX
|
||||
torch.onnx.export(
|
||||
model,
|
||||
dummy_input,
|
||||
final_path,
|
||||
input_names=['input'],
|
||||
output_names=['output'],
|
||||
opset_version=11, # ONNX opset 版本
|
||||
dynamic_axes={
|
||||
'input': {0: 'batch_size'}, # 动态批量维度
|
||||
'output': {0: 'batch_size'}
|
||||
}
|
||||
)
|
||||
print(f"Model exported successfully to {final_path}.")
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Export PyTorch model to ONNX format.")
|
||||
parser.add_argument('--weights', type=str, required=True, help='Path to PyTorch model weights (.pt file)')
|
||||
parser.add_argument('--onnx-path', type=str, default='onnx', help='Output path for ONNX model')
|
||||
parser.add_argument('--img-size', type=int, default=224, help='Input image size (default: 224)')
|
||||
parser.add_argument('--batch-size', type=int, default=8, help='Input batch size (default: 1)')
|
||||
parser.add_argument('--num-classes', type=int, default=2, help='Number of classes in the model (default: 1000)')
|
||||
parser.add_argument('--use-gpu', action='store_true', help='Enable GPU support during export')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# 设置设备
|
||||
device = torch.device('cuda' if args.use_gpu and torch.cuda.is_available() else 'cpu')
|
||||
if args.use_gpu and not torch.cuda.is_available():
|
||||
print("GPU not available, switching to CPU.")
|
||||
|
||||
# 检查权重文件是否存在
|
||||
if not os.path.isfile(args.weights):
|
||||
raise FileNotFoundError(f"Model weights file not found: {args.weights}")
|
||||
|
||||
# 加载模型
|
||||
model = load_pytorch_model(args.weights, args.num_classes, device)
|
||||
|
||||
# 导出为 ONNX
|
||||
export_to_onnx(model, args.onnx_path, args.img_size, args.batch_size, device)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
154
DPL/dgd_class/predict_11.19.py
Normal file
154
DPL/dgd_class/predict_11.19.py
Normal file
@ -0,0 +1,154 @@
|
||||
import argparse
|
||||
import torch
|
||||
import onnxruntime as ort
|
||||
from PIL import Image
|
||||
import os
|
||||
import matplotlib.pyplot as plt
|
||||
from PIL.ImageDraw import Draw
|
||||
from PIL import ImageDraw, ImageFont
|
||||
from torchvision import transforms
|
||||
import time # 导入time模块
|
||||
|
||||
# 模型类
|
||||
class Model:
|
||||
def __init__(self, model_path: str, device: torch.device):
|
||||
"""
|
||||
初始化模型,加载 ONNX 模型,并设置设备(CPU 或 GPU)。
|
||||
"""
|
||||
self.device = device
|
||||
self.session = ort.InferenceSession(model_path)
|
||||
|
||||
def predict(self, img_tensor: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
使用 ONNX 模型进行推理,返回预测结果。
|
||||
"""
|
||||
# 转换为 ONNX 输入格式
|
||||
img_numpy = img_tensor.cpu().numpy()
|
||||
|
||||
# 获取输入名称和推理
|
||||
inputs = {self.session.get_inputs()[0].name: img_numpy}
|
||||
outputs = self.session.run(None, inputs)
|
||||
|
||||
return torch.tensor(outputs[0])
|
||||
|
||||
def load(self, model_path: str):
|
||||
"""
|
||||
重新加载模型。
|
||||
"""
|
||||
self.session = ort.InferenceSession(model_path)
|
||||
|
||||
|
||||
# 预测函数
|
||||
def visualize_model_predictions(model: Model, img_path: str, save_dir: str, class_names: list):
|
||||
"""
|
||||
预测图像并可视化结果,保存预测后的图片到指定文件夹。
|
||||
"""
|
||||
start_time = time.time() # 开始时间
|
||||
|
||||
img = Image.open(img_path)
|
||||
img = img.convert('RGB') # 转换为 RGB 模式
|
||||
|
||||
# 图像预处理
|
||||
data_transforms = transforms.Compose([
|
||||
transforms.Resize(256),
|
||||
transforms.CenterCrop(224),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||
])
|
||||
img_transformed = data_transforms(img)
|
||||
img_transformed = img_transformed.unsqueeze(0)
|
||||
img_transformed = img_transformed.to(model.device)
|
||||
|
||||
# 使用模型进行预测
|
||||
preds = model.predict(img_transformed)
|
||||
|
||||
# 获取预测类别
|
||||
_, predicted_class = torch.max(preds, 1)
|
||||
|
||||
# 在图像上添加预测结果文本
|
||||
predicted_label = class_names[predicted_class[0]]
|
||||
|
||||
# 在图片上绘制文本
|
||||
img_with_text = img.copy()
|
||||
draw = ImageDraw.Draw(img_with_text)
|
||||
font = ImageFont.load_default() # 可以根据需要更改字体
|
||||
text = f'Predicted: {predicted_label}'
|
||||
text_position = (10, 10) # 文本的位置,可以根据需要调整
|
||||
draw.text(text_position, text, font=font, fill=(0, 255, 0)) # 白色文字
|
||||
|
||||
# 显示结果图片
|
||||
img_with_text.show()
|
||||
|
||||
# 保存预测后的图像
|
||||
if not os.path.exists(save_dir):
|
||||
os.makedirs(save_dir)
|
||||
|
||||
# 获取文件名和保存路径
|
||||
img_name = os.path.basename(img_path)
|
||||
save_path = os.path.join(save_dir, f"pred_{img_name}")
|
||||
|
||||
# 保存图片
|
||||
img_with_text.save(save_path)
|
||||
print(f"Prediction saved at: {save_path}")
|
||||
|
||||
end_time = time.time() # 结束时间
|
||||
processing_time = (end_time - start_time) * 1000 # 转换为毫秒
|
||||
print(f"Time taken to process {img_name}: {processing_time:.2f} ms") # 打印每张图片的处理时间(毫秒)
|
||||
|
||||
|
||||
def process_image_folder(model: Model, folder_path: str, save_dir: str, class_names: list):
|
||||
"""
|
||||
处理文件夹中的所有图像,并预测每张图像的类别。
|
||||
"""
|
||||
start_time = time.time() # 记录总开始时间
|
||||
|
||||
# 获取文件夹中所有图片文件
|
||||
image_files = [f for f in os.listdir(folder_path) if f.lower().endswith(('.png', '.jpg', '.jpeg'))]
|
||||
|
||||
# 遍历文件夹中的所有图像
|
||||
for image_file in image_files:
|
||||
img_path = os.path.join(folder_path, image_file)
|
||||
print(f"Processing image: {img_path}")
|
||||
visualize_model_predictions(model, img_path, save_dir, class_names)
|
||||
|
||||
end_time = time.time() # 记录总结束时间
|
||||
total_time = (end_time - start_time) * 1000 # 转换为毫秒
|
||||
print(f"Total time taken to process all images: {total_time:.2f} ms") # 打印总处理时间(毫秒)
|
||||
|
||||
|
||||
def main():
|
||||
# 命令行参数解析
|
||||
parser = argparse.ArgumentParser(description="Use an ONNX model for inference.")
|
||||
|
||||
# 设置默认值,并允许用户通过命令行进行修改
|
||||
parser.add_argument('--weights', type=str, default='model/model_1.onnx', help='Path to ONNX model file')
|
||||
parser.add_argument('--img-path', type=str, default='d_2/val/dgd',
|
||||
help='Path to image or folder for inference')
|
||||
parser.add_argument('--save-dir', type=str, default='detect', help='Directory to save output images')
|
||||
parser.add_argument('--gpu', action='store_true', help='Use GPU for inference')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# 设置设备
|
||||
device = torch.device('cuda' if args.gpu and torch.cuda.is_available() else 'cpu')
|
||||
if args.gpu and not torch.cuda.is_available():
|
||||
print("GPU not available, switching to CPU.")
|
||||
|
||||
# 加载模型
|
||||
model = Model(model_path=args.weights, device=device)
|
||||
|
||||
# 模拟加载 class_names
|
||||
# 假设模型类别数量为2
|
||||
class_names = ['class_0', 'class_1']
|
||||
|
||||
# 检查输入路径是否为文件夹
|
||||
if os.path.isdir(args.img_path):
|
||||
# 如果是文件夹,处理文件夹中的所有图片
|
||||
process_image_folder(model, args.img_path, args.save_dir, class_names)
|
||||
else:
|
||||
# 如果是单个图片文件,进行预测
|
||||
visualize_model_predictions(model, args.img_path, args.save_dir, class_names)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
167
DPL/dgd_class/train_11.19.py
Normal file
167
DPL/dgd_class/train_11.19.py
Normal file
@ -0,0 +1,167 @@
|
||||
import os
|
||||
import argparse
|
||||
import time
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
from torch.optim import lr_scheduler
|
||||
from torchvision import datasets, models, transforms
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# 设置 cudnn 优化
|
||||
torch.backends.cudnn.benchmark = True
|
||||
plt.ion()
|
||||
|
||||
def get_next_model_name(save_dir, base_name, ext):
|
||||
"""
|
||||
检索保存目录,生成递增编号的模型文件名。
|
||||
|
||||
Args:
|
||||
save_dir (str): 模型保存目录
|
||||
base_name (str): 模型基础名称
|
||||
ext (str): 模型文件扩展名(例如 ".pt" 或 ".onnx")
|
||||
|
||||
Returns:
|
||||
str: 自动递增编号的新模型文件名
|
||||
"""
|
||||
os.makedirs(save_dir, exist_ok=True)
|
||||
existing_files = [f for f in os.listdir(save_dir) if f.startswith(base_name) and f.endswith(ext)]
|
||||
existing_numbers = []
|
||||
for f in existing_files:
|
||||
try:
|
||||
num = int(f[len(base_name):].split('.')[0].strip('_'))
|
||||
existing_numbers.append(num)
|
||||
except ValueError:
|
||||
continue
|
||||
next_number = max(existing_numbers, default=0) + 1
|
||||
return os.path.join(save_dir, f"{base_name}_{next_number}{ext}")
|
||||
|
||||
|
||||
def get_data_loaders(data_dir, batch_size):
|
||||
"""Prepare data loaders for training and validation."""
|
||||
data_transforms = {
|
||||
'train': transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||
]),
|
||||
'val': transforms.Compose([
|
||||
transforms.Resize(256),
|
||||
transforms.CenterCrop(224),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
||||
]),
|
||||
}
|
||||
|
||||
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])
|
||||
for x in ['train', 'val']}
|
||||
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size,
|
||||
shuffle=True, num_workers=4)
|
||||
for x in ['train', 'val']}
|
||||
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
|
||||
class_names = image_datasets['train'].classes
|
||||
|
||||
return dataloaders, dataset_sizes, class_names
|
||||
|
||||
|
||||
def train_model(model, criterion, optimizer, scheduler, dataloaders, dataset_sizes, device,
|
||||
num_epochs, model_save_dir, model_base_name):
|
||||
"""Train the model and save the best weights."""
|
||||
since = time.time()
|
||||
os.makedirs(model_save_dir, exist_ok=True)
|
||||
|
||||
best_acc = 0.0
|
||||
best_model_path = None # 用于保存最佳模型路径
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
print(f'Epoch {epoch}/{num_epochs - 1}')
|
||||
print('-' * 10)
|
||||
|
||||
for phase in ['train', 'val']:
|
||||
if phase == 'train':
|
||||
model.train()
|
||||
else:
|
||||
model.eval()
|
||||
|
||||
running_loss = 0.0
|
||||
running_corrects = 0
|
||||
|
||||
for inputs, labels in dataloaders[phase]:
|
||||
inputs, labels = inputs.to(device), labels.to(device)
|
||||
|
||||
optimizer.zero_grad()
|
||||
|
||||
with torch.set_grad_enabled(phase == 'train'):
|
||||
outputs = model(inputs)
|
||||
_, preds = torch.max(outputs, 1)
|
||||
loss = criterion(outputs, labels)
|
||||
|
||||
if phase == 'train':
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
running_loss += loss.item() * inputs.size(0)
|
||||
running_corrects += torch.sum(preds == labels.data)
|
||||
|
||||
if phase == 'train':
|
||||
scheduler.step()
|
||||
|
||||
epoch_loss = running_loss / dataset_sizes[phase]
|
||||
epoch_acc = running_corrects.double() / dataset_sizes[phase]
|
||||
|
||||
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
|
||||
|
||||
if phase == 'val' and epoch_acc > best_acc:
|
||||
best_acc = epoch_acc
|
||||
|
||||
# 保存新的最佳模型
|
||||
best_model_path = get_next_model_name(model_save_dir, model_base_name, '.pt')
|
||||
|
||||
torch.save(model.state_dict(), best_model_path)
|
||||
print(f"Best model weights saved at {best_model_path}")
|
||||
|
||||
time_elapsed = time.time() - since
|
||||
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
|
||||
print(f'Best val Acc: {best_acc:.4f}')
|
||||
|
||||
if best_model_path:
|
||||
# 仅加载最后保存的最佳模型
|
||||
model.load_state_dict(torch.load(best_model_path, weights_only=True))
|
||||
else:
|
||||
print("No best model was saved during training.")
|
||||
return model
|
||||
|
||||
|
||||
# 参数解析部分
|
||||
parser = argparse.ArgumentParser(description="Train a ResNet18 model on custom dataset.")
|
||||
parser.add_argument('--data-dir', type=str, default='d_2', help='Path to the dataset directory.')
|
||||
parser.add_argument('--model-save-dir', type=str, default='model', help='Directory to save the trained model.')
|
||||
parser.add_argument('--batch-size', type=int, default=8, help='Batch size for training.')
|
||||
parser.add_argument('--epochs', type=int, default=5, help='Number of training epochs.')
|
||||
parser.add_argument('--lr', type=float, default=0.0005, help='Learning rate.')
|
||||
parser.add_argument('--momentum', type=float, default=0.95, help='Momentum for SGD.')
|
||||
parser.add_argument('--step-size', type=int, default=5, help='Step size for LR scheduler.')
|
||||
parser.add_argument('--gamma', type=float, default=0.2, help='Gamma for LR scheduler.')
|
||||
parser.add_argument('--num-classes', type=int, default=2, help='Number of output classes.')
|
||||
parser.add_argument('--model-base-name', type=str, default='best_model', help='Base name for saved models.')
|
||||
|
||||
def main(args):
|
||||
"""Main function to train the model based on command-line arguments."""
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
dataloaders, dataset_sizes, class_names = get_data_loaders(args.data_dir, args.batch_size)
|
||||
|
||||
model = models.resnet18(weights='IMAGENET1K_V1')
|
||||
num_ftrs = model.fc.in_features
|
||||
model.fc = nn.Linear(num_ftrs, args.num_classes)
|
||||
model = model.to(device)
|
||||
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
|
||||
scheduler = lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=args.gamma)
|
||||
|
||||
train_model(model, criterion, optimizer, scheduler, dataloaders, dataset_sizes, device,
|
||||
args.epochs, args.model_save_dir, args.model_base_name)
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
Loading…
Reference in New Issue
Block a user