362 lines
9.2 KiB
C++
362 lines
9.2 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#pragma once
|
|
|
|
#ifndef OPENCV_CUDEV_PTR2D_GPUMAT_DETAIL_HPP
|
|
#define OPENCV_CUDEV_PTR2D_GPUMAT_DETAIL_HPP
|
|
|
|
#include "../gpumat.hpp"
|
|
|
|
namespace cv { namespace cudev {
|
|
|
|
template <typename T>
|
|
__host__ GpuMat_<T>::GpuMat_(Allocator* allocator)
|
|
: GpuMat(allocator)
|
|
{
|
|
flags = (flags & ~CV_MAT_TYPE_MASK) | traits::Type<T>::value;
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ GpuMat_<T>::GpuMat_(int arows, int acols, Allocator* allocator)
|
|
: GpuMat(arows, acols, traits::Type<T>::value, allocator)
|
|
{
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ GpuMat_<T>::GpuMat_(Size asize, Allocator* allocator)
|
|
: GpuMat(asize.height, asize.width, traits::Type<T>::value, allocator)
|
|
{
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ GpuMat_<T>::GpuMat_(int arows, int acols, Scalar val, Allocator* allocator)
|
|
: GpuMat(arows, acols, traits::Type<T>::value, val, allocator)
|
|
{
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ GpuMat_<T>::GpuMat_(Size asize, Scalar val, Allocator* allocator)
|
|
: GpuMat(asize.height, asize.width, traits::Type<T>::value, val, allocator)
|
|
{
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ GpuMat_<T>::GpuMat_(const GpuMat_& m)
|
|
: GpuMat(m)
|
|
{
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ GpuMat_<T>::GpuMat_(const GpuMat& m, Allocator* allocator)
|
|
: GpuMat(allocator)
|
|
{
|
|
flags = (flags & ~CV_MAT_TYPE_MASK) | traits::Type<T>::value;
|
|
|
|
if (traits::Type<T>::value == m.type())
|
|
{
|
|
GpuMat::operator =(m);
|
|
return;
|
|
}
|
|
|
|
if (traits::Depth<T>::value == m.depth())
|
|
{
|
|
GpuMat::operator =(m.reshape(DataType<T>::channels, m.rows));
|
|
return;
|
|
}
|
|
|
|
CV_Assert( DataType<T>::channels == m.channels() );
|
|
m.convertTo(*this, type());
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ GpuMat_<T>::GpuMat_(int arows, int acols, T* adata, size_t astep)
|
|
: GpuMat(arows, acols, traits::Type<T>::value, adata, astep)
|
|
{
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ GpuMat_<T>::GpuMat_(Size asize, T* adata, size_t astep)
|
|
: GpuMat(asize.height, asize.width, traits::Type<T>::value, adata, astep)
|
|
{
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ GpuMat_<T>::GpuMat_(const GpuMat_& m, Range arowRange, Range acolRange)
|
|
: GpuMat(m, arowRange, acolRange)
|
|
{
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ GpuMat_<T>::GpuMat_(const GpuMat_& m, Rect roi)
|
|
: GpuMat(m, roi)
|
|
{
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ GpuMat_<T>::GpuMat_(InputArray arr, Allocator* allocator)
|
|
: GpuMat(allocator)
|
|
{
|
|
flags = (flags & ~CV_MAT_TYPE_MASK) | traits::Type<T>::value;
|
|
upload(arr);
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ GpuMat_<T>& GpuMat_<T>::operator =(const GpuMat_& m)
|
|
{
|
|
GpuMat::operator =(m);
|
|
return *this;
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ void GpuMat_<T>::create(int arows, int acols)
|
|
{
|
|
GpuMat::create(arows, acols, traits::Type<T>::value);
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ void GpuMat_<T>::create(Size asize)
|
|
{
|
|
GpuMat::create(asize, traits::Type<T>::value);
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ void GpuMat_<T>::swap(GpuMat_& mat)
|
|
{
|
|
GpuMat::swap(mat);
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ void GpuMat_<T>::upload(InputArray arr)
|
|
{
|
|
CV_Assert( arr.type() == traits::Type<T>::value );
|
|
GpuMat::upload(arr);
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ void GpuMat_<T>::upload(InputArray arr, Stream& stream)
|
|
{
|
|
CV_Assert( arr.type() == traits::Type<T>::value );
|
|
GpuMat::upload(arr, stream);
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ GpuMat_<T>::operator GlobPtrSz<T>() const
|
|
{
|
|
return globPtr((T*) data, step, rows, cols);
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ GpuMat_<T>::operator GlobPtr<T>() const
|
|
{
|
|
return globPtr((T*) data, step);
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ GpuMat_<T> GpuMat_<T>::clone() const
|
|
{
|
|
return GpuMat_(GpuMat::clone());
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ GpuMat_<T> GpuMat_<T>::row(int y) const
|
|
{
|
|
return GpuMat_(*this, Range(y, y+1), Range::all());
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ GpuMat_<T> GpuMat_<T>::col(int x) const
|
|
{
|
|
return GpuMat_(*this, Range::all(), Range(x, x+1));
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ GpuMat_<T> GpuMat_<T>::rowRange(int startrow, int endrow) const
|
|
{
|
|
return GpuMat_(*this, Range(startrow, endrow), Range::all());
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ GpuMat_<T> GpuMat_<T>::rowRange(Range r) const
|
|
{
|
|
return GpuMat_(*this, r, Range::all());
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ GpuMat_<T> GpuMat_<T>::colRange(int startcol, int endcol) const
|
|
{
|
|
return GpuMat_(*this, Range::all(), Range(startcol, endcol));
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ GpuMat_<T> GpuMat_<T>::colRange(Range r) const
|
|
{
|
|
return GpuMat_(*this, Range::all(), r);
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ GpuMat_<T> GpuMat_<T>::operator ()(Range _rowRange, Range _colRange) const
|
|
{
|
|
return GpuMat_(*this, _rowRange, _colRange);
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ GpuMat_<T> GpuMat_<T>::operator ()(Rect roi) const
|
|
{
|
|
return GpuMat_(*this, roi);
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ GpuMat_<T>& GpuMat_<T>::adjustROI(int dtop, int dbottom, int dleft, int dright)
|
|
{
|
|
return (GpuMat_<T>&)(GpuMat::adjustROI(dtop, dbottom, dleft, dright));
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ size_t GpuMat_<T>::elemSize() const
|
|
{
|
|
CV_DbgAssert( GpuMat::elemSize() == sizeof(T) );
|
|
return sizeof(T);
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ size_t GpuMat_<T>::elemSize1() const
|
|
{
|
|
CV_DbgAssert( GpuMat::elemSize1() == sizeof(T) / DataType<T>::channels );
|
|
return sizeof(T) / DataType<T>::channels;
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ int GpuMat_<T>::type() const
|
|
{
|
|
CV_DbgAssert( GpuMat::type() == traits::Type<T>::value );
|
|
return traits::Type<T>::value;
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ int GpuMat_<T>::depth() const
|
|
{
|
|
CV_DbgAssert( GpuMat::depth() == traits::Depth<T>::value );
|
|
return traits::Depth<T>::value;
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ int GpuMat_<T>::channels() const
|
|
{
|
|
CV_DbgAssert( GpuMat::channels() == DataType<T>::channels );
|
|
return DataType<T>::channels;
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ size_t GpuMat_<T>::stepT() const
|
|
{
|
|
return step / elemSize();
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ size_t GpuMat_<T>::step1() const
|
|
{
|
|
return step / elemSize1();
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ T* GpuMat_<T>::operator [](int y)
|
|
{
|
|
return (T*)ptr(y);
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ const T* GpuMat_<T>::operator [](int y) const
|
|
{
|
|
return (const T*)ptr(y);
|
|
}
|
|
|
|
template <typename T> template <class Body>
|
|
__host__ GpuMat_<T>::GpuMat_(const Expr<Body>& expr)
|
|
: GpuMat()
|
|
{
|
|
flags = (flags & ~CV_MAT_TYPE_MASK) | DataType<T>::type;
|
|
*this = expr;
|
|
}
|
|
|
|
template <typename T> template <class Body>
|
|
__host__ GpuMat_<T>& GpuMat_<T>::operator =(const Expr<Body>& expr)
|
|
{
|
|
expr.body.assignTo(*this);
|
|
return *this;
|
|
}
|
|
|
|
template <typename T> template <class Body>
|
|
__host__ GpuMat_<T>& GpuMat_<T>::assign(const Expr<Body>& expr, Stream& stream)
|
|
{
|
|
expr.body.assignTo(*this, stream);
|
|
return *this;
|
|
}
|
|
|
|
}}
|
|
|
|
// Input / Output Arrays
|
|
|
|
namespace cv {
|
|
|
|
template<typename _Tp>
|
|
__host__ _InputArray::_InputArray(const cudev::GpuMat_<_Tp>& m)
|
|
: flags(FIXED_TYPE + CUDA_GPU_MAT + traits::Type<_Tp>::value), obj((void*)&m)
|
|
{}
|
|
|
|
template<typename _Tp>
|
|
__host__ _OutputArray::_OutputArray(cudev::GpuMat_<_Tp>& m)
|
|
: _InputArray(m)
|
|
{}
|
|
|
|
template<typename _Tp>
|
|
__host__ _OutputArray::_OutputArray(const cudev::GpuMat_<_Tp>& m)
|
|
: _InputArray(m)
|
|
{
|
|
flags |= FIXED_SIZE;
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|