cotton_double/opencv410-vs22/include/opencv2/cudev/grid/detail/transform.hpp

538 lines
25 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#pragma once
#ifndef OPENCV_CUDEV_GRID_TRANSFORM_DETAIL_HPP
#define OPENCV_CUDEV_GRID_TRANSFORM_DETAIL_HPP
#include "../../common.hpp"
#include "../../util/tuple.hpp"
#include "../../util/saturate_cast.hpp"
#include "../../util/vec_traits.hpp"
#include "../../ptr2d/glob.hpp"
#include "../../ptr2d/traits.hpp"
namespace cv { namespace cudev {
namespace grid_transform_detail
{
// OpUnroller
template <int cn> struct OpUnroller;
template <> struct OpUnroller<1>
{
template <typename T, typename D, class UnOp, class MaskPtr>
__device__ __forceinline__ static void unroll(const T& src, D& dst, const UnOp& op, const MaskPtr& mask, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.x = op(src.x);
}
template <typename T1, typename T2, typename D, class BinOp, class MaskPtr>
__device__ __forceinline__ static void unroll(const T1& src1, const T2& src2, D& dst, const BinOp& op, const MaskPtr& mask, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.x = op(src1.x, src2.x);
}
};
template <> struct OpUnroller<2>
{
template <typename T, typename D, class UnOp, class MaskPtr>
__device__ __forceinline__ static void unroll(const T& src, D& dst, const UnOp& op, const MaskPtr& mask, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.x = op(src.x);
if (mask(y, x_shifted + 1))
dst.y = op(src.y);
}
template <typename T1, typename T2, typename D, class BinOp, class MaskPtr>
__device__ __forceinline__ static void unroll(const T1& src1, const T2& src2, D& dst, const BinOp& op, const MaskPtr& mask, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.x = op(src1.x, src2.x);
if (mask(y, x_shifted + 1))
dst.y = op(src1.y, src2.y);
}
};
template <> struct OpUnroller<3>
{
template <typename T, typename D, class UnOp, class MaskPtr>
__device__ __forceinline__ static void unroll(const T& src, D& dst, const UnOp& op, const MaskPtr& mask, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.x = op(src.x);
if (mask(y, x_shifted + 1))
dst.y = op(src.y);
if (mask(y, x_shifted + 2))
dst.z = op(src.z);
}
template <typename T1, typename T2, typename D, class BinOp, class MaskPtr>
__device__ __forceinline__ static void unroll(const T1& src1, const T2& src2, D& dst, const BinOp& op, const MaskPtr& mask, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.x = op(src1.x, src2.x);
if (mask(y, x_shifted + 1))
dst.y = op(src1.y, src2.y);
if (mask(y, x_shifted + 2))
dst.z = op(src1.z, src2.z);
}
};
template <> struct OpUnroller<4>
{
template <typename T, typename D, class UnOp, class MaskPtr>
__device__ __forceinline__ static void unroll(const T& src, D& dst, const UnOp& op, const MaskPtr& mask, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.x = op(src.x);
if (mask(y, x_shifted + 1))
dst.y = op(src.y);
if (mask(y, x_shifted + 2))
dst.z = op(src.z);
if (mask(y, x_shifted + 3))
dst.w = op(src.w);
}
template <typename T1, typename T2, typename D, class BinOp, class MaskPtr>
__device__ __forceinline__ static void unroll(const T1& src1, const T2& src2, D& dst, const BinOp& op, const MaskPtr& mask, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.x = op(src1.x, src2.x);
if (mask(y, x_shifted + 1))
dst.y = op(src1.y, src2.y);
if (mask(y, x_shifted + 2))
dst.z = op(src1.z, src2.z);
if (mask(y, x_shifted + 3))
dst.w = op(src1.w, src2.w);
}
};
// transformSimple
template <class SrcPtr, typename DstType, class UnOp, class MaskPtr>
__global__ void transformSimple(const SrcPtr src, GlobPtr<DstType> dst, const UnOp op, const MaskPtr mask, const int rows, const int cols)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= cols || y >= rows || !mask(y, x))
return;
dst(y, x) = saturate_cast<DstType>(op(src(y, x)));
}
template <class SrcPtr1, class SrcPtr2, typename DstType, class BinOp, class MaskPtr>
__global__ void transformSimple(const SrcPtr1 src1, const SrcPtr2 src2, GlobPtr<DstType> dst, const BinOp op, const MaskPtr mask, const int rows, const int cols)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= cols || y >= rows || !mask(y, x))
return;
dst(y, x) = saturate_cast<DstType>(op(src1(y, x), src2(y, x)));
}
// transformSimple, 2 outputs
// The overloads are added for polar_cart.cu to compute magnitude and phase with single call
// the previous implementation with touple causes cuda namespace clash. See https://github.com/opencv/opencv_contrib/issues/3690
template <class SrcPtr1, class SrcPtr2, typename DstType1, typename DstType2, class BinOp1, class BinOp2, class MaskPtr>
__global__ void transformSimple(const SrcPtr1 src1, const SrcPtr2 src2, GlobPtr<DstType1> dst1, GlobPtr<DstType2> dst2,
const BinOp1 op1, const BinOp2 op2, const MaskPtr mask, const int rows, const int cols)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= cols || y >= rows || !mask(y, x))
return;
dst1(y, x) = saturate_cast<DstType1>(op1(src1(y, x), src2(y, x)));
dst2(y, x) = saturate_cast<DstType2>(op2(src1(y, x), src2(y, x)));
}
// transformSmart
template <int SHIFT, typename SrcType, typename DstType, class UnOp, class MaskPtr>
__global__ void transformSmart(const GlobPtr<SrcType> src_, GlobPtr<DstType> dst_, const UnOp op, const MaskPtr mask, const int rows, const int cols)
{
typedef typename MakeVec<SrcType, SHIFT>::type read_type;
typedef typename MakeVec<DstType, SHIFT>::type write_type;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x_shifted = x * SHIFT;
if (y < rows)
{
const SrcType* src = src_.row(y);
DstType* dst = dst_.row(y);
if (x_shifted + SHIFT - 1 < cols)
{
const read_type src_n_el = ((const read_type*)src)[x];
OpUnroller<SHIFT>::unroll(src_n_el, ((write_type*)dst)[x], op, mask, x_shifted, y);
}
else
{
for (int real_x = x_shifted; real_x < cols; ++real_x)
{
if (mask(y, real_x))
dst[real_x] = op(src[real_x]);
}
}
}
}
template <int SHIFT, typename SrcType1, typename SrcType2, typename DstType, class BinOp, class MaskPtr>
__global__ void transformSmart(const GlobPtr<SrcType1> src1_, const GlobPtr<SrcType2> src2_, GlobPtr<DstType> dst_, const BinOp op, const MaskPtr mask, const int rows, const int cols)
{
typedef typename MakeVec<SrcType1, SHIFT>::type read_type1;
typedef typename MakeVec<SrcType2, SHIFT>::type read_type2;
typedef typename MakeVec<DstType, SHIFT>::type write_type;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x_shifted = x * SHIFT;
if (y < rows)
{
const SrcType1* src1 = src1_.row(y);
const SrcType2* src2 = src2_.row(y);
DstType* dst = dst_.row(y);
if (x_shifted + SHIFT - 1 < cols)
{
const read_type1 src1_n_el = ((const read_type1*)src1)[x];
const read_type2 src2_n_el = ((const read_type2*)src2)[x];
OpUnroller<SHIFT>::unroll(src1_n_el, src2_n_el, ((write_type*)dst)[x], op, mask, x_shifted, y);
}
else
{
for (int real_x = x_shifted; real_x < cols; ++real_x)
{
if (mask(y, real_x))
dst[real_x] = op(src1[real_x], src2[real_x]);
}
}
}
}
// transformSmart, 2 outputs
// The overloads are added for polar_cart.cu to compute magnitude and phase with single call
// the previous implementation with touple causes cuda namespace clash. See https://github.com/opencv/opencv_contrib/issues/3690
template <int SHIFT, typename SrcType1, typename SrcType2, typename DstType1, typename DstType2, class BinOp1, class BinOp2, class MaskPtr>
__global__ void transformSmart(const GlobPtr<SrcType1> src1_, const GlobPtr<SrcType2> src2_,
GlobPtr<DstType1> dst1_, GlobPtr<DstType2> dst2_,
const BinOp1 op1, const BinOp2 op2, const MaskPtr mask, const int rows, const int cols)
{
typedef typename MakeVec<SrcType1, SHIFT>::type read_type1;
typedef typename MakeVec<SrcType2, SHIFT>::type read_type2;
typedef typename MakeVec<DstType1, SHIFT>::type write_type1;
typedef typename MakeVec<DstType2, SHIFT>::type write_type2;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x_shifted = x * SHIFT;
if (y < rows)
{
const SrcType1* src1 = src1_.row(y);
const SrcType2* src2 = src2_.row(y);
DstType1* dst1 = dst1_.row(y);
DstType2* dst2 = dst2_.row(y);
if (x_shifted + SHIFT - 1 < cols)
{
const read_type1 src1_n_el = ((const read_type1*)src1)[x];
const read_type2 src2_n_el = ((const read_type2*)src2)[x];
OpUnroller<SHIFT>::unroll(src1_n_el, src2_n_el, ((write_type1*)dst1)[x], op1, mask, x_shifted, y);
OpUnroller<SHIFT>::unroll(src1_n_el, src2_n_el, ((write_type2*)dst2)[x], op2, mask, x_shifted, y);
}
else
{
for (int real_x = x_shifted; real_x < cols; ++real_x)
{
if (mask(y, real_x))
{
dst1[real_x] = op1(src1[real_x], src2[real_x]);
dst2[real_x] = op2(src1[real_x], src2[real_x]);
}
}
}
}
}
// TransformDispatcher
template <bool UseSmart, class Policy> struct TransformDispatcher;
template <class Policy> struct TransformDispatcher<false, Policy>
{
template <class SrcPtr, typename DstType, class UnOp, class MaskPtr>
__host__ static void call(const SrcPtr& src, const GlobPtr<DstType>& dst, const UnOp& op, const MaskPtr& mask, int rows, int cols, cudaStream_t stream)
{
const dim3 block(Policy::block_size_x, Policy::block_size_y);
const dim3 grid(divUp(cols, block.x), divUp(rows, block.y));
transformSimple<<<grid, block, 0, stream>>>(src, dst, op, mask, rows, cols);
CV_CUDEV_SAFE_CALL( cudaGetLastError() );
if (stream == 0)
CV_CUDEV_SAFE_CALL( cudaDeviceSynchronize() );
}
template <class SrcPtr1, class SrcPtr2, typename DstType, class BinOp, class MaskPtr>
__host__ static void call(const SrcPtr1& src1, const SrcPtr2& src2, const GlobPtr<DstType>& dst, const BinOp& op, const MaskPtr& mask, int rows, int cols, cudaStream_t stream)
{
const dim3 block(Policy::block_size_x, Policy::block_size_y);
const dim3 grid(divUp(cols, block.x), divUp(rows, block.y));
transformSimple<<<grid, block, 0, stream>>>(src1, src2, dst, op, mask, rows, cols);
CV_CUDEV_SAFE_CALL( cudaGetLastError() );
if (stream == 0)
CV_CUDEV_SAFE_CALL( cudaDeviceSynchronize() );
}
template <class SrcPtr1, class SrcPtr2, typename DstType1, typename DstType2, class BinOp1, class BinOp2, class MaskPtr>
__host__ static void call(const SrcPtr1& src1, const SrcPtr2& src2, const GlobPtr<DstType1>& dst1, const GlobPtr<DstType2>& dst2,
const BinOp1& op1, const BinOp2& op2, const MaskPtr& mask, int rows, int cols, cudaStream_t stream)
{
const dim3 block(Policy::block_size_x, Policy::block_size_y);
const dim3 grid(divUp(cols, block.x), divUp(rows, block.y));
transformSimple<<<grid, block, 0, stream>>>(src1, src2, dst1, dst2, op1, op2, mask, rows, cols);
CV_CUDEV_SAFE_CALL( cudaGetLastError() );
if (stream == 0)
CV_CUDEV_SAFE_CALL( cudaDeviceSynchronize() );
}
};
template <class Policy> struct TransformDispatcher<true, Policy>
{
template <typename T>
__host__ static bool isAligned(const T* ptr, size_t size)
{
return reinterpret_cast<size_t>(ptr) % size == 0;
}
__host__ static bool isAligned(size_t step, size_t size)
{
return step % size == 0;
}
template <typename SrcType, typename DstType, class UnOp, class MaskPtr>
__host__ static void call(const GlobPtr<SrcType>& src, const GlobPtr<DstType>& dst, const UnOp& op, const MaskPtr& mask, int rows, int cols, cudaStream_t stream)
{
if (Policy::shift == 1 ||
!isAligned(src.data, Policy::shift * sizeof(SrcType)) || !isAligned(src.step, Policy::shift * sizeof(SrcType)) ||
!isAligned(dst.data, Policy::shift * sizeof(DstType)) || !isAligned(dst.step, Policy::shift * sizeof(DstType)))
{
TransformDispatcher<false, Policy>::call(src, dst, op, mask, rows, cols, stream);
return;
}
const dim3 block(Policy::block_size_x, Policy::block_size_y);
const dim3 grid(divUp(cols, block.x * Policy::shift), divUp(rows, block.y));
transformSmart<Policy::shift><<<grid, block, 0, stream>>>(src, dst, op, mask, rows, cols);
CV_CUDEV_SAFE_CALL( cudaGetLastError() );
if (stream == 0)
CV_CUDEV_SAFE_CALL( cudaDeviceSynchronize() );
}
template <typename SrcType1, typename SrcType2, typename DstType, class BinOp, class MaskPtr>
__host__ static void call(const GlobPtr<SrcType1>& src1, const GlobPtr<SrcType2>& src2, const GlobPtr<DstType>& dst, const BinOp& op, const MaskPtr& mask, int rows, int cols, cudaStream_t stream)
{
if (Policy::shift == 1 ||
!isAligned(src1.data, Policy::shift * sizeof(SrcType1)) || !isAligned(src1.step, Policy::shift * sizeof(SrcType1)) ||
!isAligned(src2.data, Policy::shift * sizeof(SrcType2)) || !isAligned(src2.step, Policy::shift * sizeof(SrcType2)) ||
!isAligned(dst.data, Policy::shift * sizeof(DstType)) || !isAligned(dst.step, Policy::shift * sizeof(DstType)))
{
TransformDispatcher<false, Policy>::call(src1, src2, dst, op, mask, rows, cols, stream);
return;
}
const dim3 block(Policy::block_size_x, Policy::block_size_y);
const dim3 grid(divUp(cols, block.x * Policy::shift), divUp(rows, block.y));
transformSmart<Policy::shift><<<grid, block, 0, stream>>>(src1, src2, dst, op, mask, rows, cols);
CV_CUDEV_SAFE_CALL( cudaGetLastError() );
if (stream == 0)
CV_CUDEV_SAFE_CALL( cudaDeviceSynchronize() );
}
template <typename SrcType1, typename SrcType2, typename DstType1, typename DstType2, class BinOp1, class BinOp2, class MaskPtr>
__host__ static void call(const GlobPtr<SrcType1>& src1, const GlobPtr<SrcType2>& src2,
const GlobPtr<DstType1>& dst1, const GlobPtr<DstType2>& dst2,
const BinOp1& op1, const BinOp2& op2, const MaskPtr& mask, int rows, int cols, cudaStream_t stream)
{
if (Policy::shift == 1 ||
!isAligned(src1.data, Policy::shift * sizeof(SrcType1)) || !isAligned(src1.step, Policy::shift * sizeof(SrcType1)) ||
!isAligned(src2.data, Policy::shift * sizeof(SrcType2)) || !isAligned(src2.step, Policy::shift * sizeof(SrcType2)) ||
!isAligned(dst1.data, Policy::shift * sizeof(DstType1)) || !isAligned(dst1.step, Policy::shift * sizeof(DstType1))||
!isAligned(dst2.data, Policy::shift * sizeof(DstType2)) || !isAligned(dst2.step, Policy::shift * sizeof(DstType2))
)
{
TransformDispatcher<false, Policy>::call(src1, src2, dst1, dst2, op1, op2, mask, rows, cols, stream);
return;
}
const dim3 block(Policy::block_size_x, Policy::block_size_y);
const dim3 grid(divUp(cols, block.x * Policy::shift), divUp(rows, block.y));
transformSmart<Policy::shift><<<grid, block, 0, stream>>>(src1, src2, dst1, dst2, op1, op2, mask, rows, cols);
CV_CUDEV_SAFE_CALL( cudaGetLastError() );
if (stream == 0)
CV_CUDEV_SAFE_CALL( cudaDeviceSynchronize() );
}
};
template <class Policy, class SrcPtr, typename DstType, class UnOp, class MaskPtr>
__host__ void transform_unary(const SrcPtr& src, const GlobPtr<DstType>& dst, const UnOp& op, const MaskPtr& mask, int rows, int cols, cudaStream_t stream)
{
TransformDispatcher<false, Policy>::call(src, dst, op, mask, rows, cols, stream);
}
template <class Policy, class SrcPtr1, class SrcPtr2, typename DstType, class BinOp, class MaskPtr>
__host__ void transform_binary(const SrcPtr1& src1, const SrcPtr2& src2, const GlobPtr<DstType>& dst, const BinOp& op, const MaskPtr& mask, int rows, int cols, cudaStream_t stream)
{
TransformDispatcher<false, Policy>::call(src1, src2, dst, op, mask, rows, cols, stream);
}
template <class Policy, class SrcPtr1, class SrcPtr2, typename DstType1, typename DstType2, class BinOp1, class BinOp2, class MaskPtr>
__host__ void transform_binary(const SrcPtr1& src1, const SrcPtr2& src2, const GlobPtr<DstType1>& dst1, const GlobPtr<DstType2>& dst2,
const BinOp1& op1, const BinOp2& op2, const MaskPtr& mask, int rows, int cols, cudaStream_t stream)
{
TransformDispatcher<false, Policy>::call(src1, src2, dst1, dst2, op1, op2, mask, rows, cols, stream);
}
template <class Policy, typename SrcType, typename DstType, class UnOp, class MaskPtr>
__host__ void transform_unary(const GlobPtr<SrcType>& src, const GlobPtr<DstType>& dst, const UnOp& op, const MaskPtr& mask, int rows, int cols, cudaStream_t stream)
{
TransformDispatcher<VecTraits<SrcType>::cn == 1 && VecTraits<DstType>::cn == 1 && Policy::shift != 1, Policy>::call(src, dst, op, mask, rows, cols, stream);
}
template <class Policy, typename SrcType1, typename SrcType2, typename DstType, class BinOp, class MaskPtr>
__host__ void transform_binary(const GlobPtr<SrcType1>& src1, const GlobPtr<SrcType2>& src2, const GlobPtr<DstType>& dst, const BinOp& op, const MaskPtr& mask, int rows, int cols, cudaStream_t stream)
{
TransformDispatcher<VecTraits<SrcType1>::cn == 1 && VecTraits<SrcType2>::cn == 1 && VecTraits<DstType>::cn == 1 && Policy::shift != 1, Policy>::call(src1, src2, dst, op, mask, rows, cols, stream);
}
template <class Policy, typename SrcType1, typename SrcType2, typename DstType1, typename DstType2, class BinOp1, class BinOp2, class MaskPtr>
__host__ void transform_binary(const GlobPtr<SrcType1>& src1, const GlobPtr<SrcType2>& src2, const GlobPtr<DstType1>& dst1, const GlobPtr<DstType2>& dst2,
const BinOp1& op1, const BinOp2& op2, const MaskPtr& mask, int rows, int cols, cudaStream_t stream)
{
TransformDispatcher<VecTraits<SrcType1>::cn == 1 && VecTraits<SrcType2>::cn == 1 &&
VecTraits<DstType1>::cn == 1 && VecTraits<DstType2>::cn == 1 &&
Policy::shift != 1, Policy>::call(src1, src2, dst1, dst2, op1, op2, mask, rows, cols, stream);
}
// transform_tuple
template <int count> struct Unroll
{
template <class SrcVal, class DstPtrTuple, class OpTuple>
__device__ static void transform(const SrcVal& srcVal, DstPtrTuple& dst, const OpTuple& op, int y, int x)
{
typedef typename tuple_element<count - 1, DstPtrTuple>::type dst_ptr_type;
typedef typename PtrTraits<dst_ptr_type>::value_type dst_type;
get<count - 1>(dst)(y, x) = saturate_cast<dst_type>(get<count - 1>(op)(srcVal));
Unroll<count - 1>::transform(srcVal, dst, op, y, x);
}
};
template <> struct Unroll<0>
{
template <class SrcVal, class DstPtrTuple, class OpTuple>
__device__ __forceinline__ static void transform(const SrcVal&, DstPtrTuple&, const OpTuple&, int, int)
{
}
};
template <class SrcPtr, class DstPtrTuple, class OpTuple, class MaskPtr>
__global__ void transform_tuple(const SrcPtr src, DstPtrTuple dst, const OpTuple op, const MaskPtr mask, const int rows, const int cols)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= cols || y >= rows || !mask(y, x))
return;
typename PtrTraits<SrcPtr>::value_type srcVal = src(y, x);
Unroll<tuple_size<DstPtrTuple>::value>::transform(srcVal, dst, op, y, x);
}
template <class Policy, class SrcPtrTuple, class DstPtrTuple, class OpTuple, class MaskPtr>
__host__ void transform_tuple(const SrcPtrTuple& src, const DstPtrTuple& dst, const OpTuple& op, const MaskPtr& mask, int rows, int cols, cudaStream_t stream)
{
const dim3 block(Policy::block_size_x, Policy::block_size_y);
const dim3 grid(divUp(cols, block.x), divUp(rows, block.y));
transform_tuple<<<grid, block, 0, stream>>>(src, dst, op, mask, rows, cols);
CV_CUDEV_SAFE_CALL( cudaGetLastError() );
if (stream == 0)
CV_CUDEV_SAFE_CALL( cudaDeviceSynchronize() );
}
}
}}
#endif