概述

由6条差分信号 SCLK+, SCLK-, SEN+, SEN-, SDATA+, SDATA-

显然共计3个信号

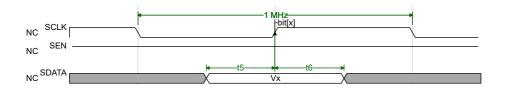

- SCLK 为1MHz同步时钟,周期抖动小于500ps
- SEN 为传输状态
- SDATA 为阀控制信号, 1表示关, 0表示开, 小端模式

物理层

- LVDS差分
- 100欧姆双绞线

*电磁兼容、信号衰减什么的统统没测过,杜邦线、软排线、双绞线随便乱用即可

数据链路层


当需要传输一帧数据时,首先在 SCLK 的一个下降沿拉高 SEN 并建立第一个阀的控制信号V0,接收电路将在 SCLK 上升沿采样。n表示通道数,即所需控制阀门的数量,整个传输过程中,须将 SEN 拉高保持n个 SCLK 周期,期间发送n个 SDATA 阀控制信号,分别对应第1个到第n个阀。待最后一个阀的控制信号发送完成后,在 SCLK 到达下一个下降沿时,拉低 SEN。

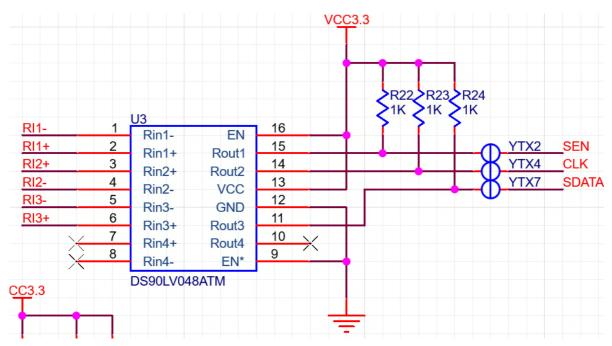
在两帧的间隔中,应持续保持发送1MHz的 SCLK ,接收端将通过 SCLK 的电平跳转来判断是否断开连接。另外,两帧数据的间隔应至少为5个 SCLK 周期。

Symbol	Parameter	Min	Тур	Max	Unit
t1	SCLK setup time	250	500	750	ns
t2	Data output access time	-	250	280	ns
t3	SEN hold time	250	500	750	ns
t4	Data output disable time	-	250	280	ns

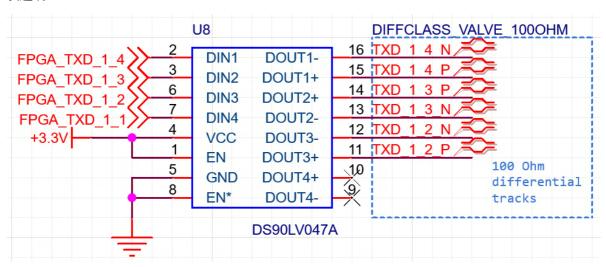
^{*}Condition at SCLK=1MHz

下面是每一位数据的具体时序

Symbol	Parameter	Min	Тур	Max	Unit
t5	Data output valid time	50**	500	750	ns
t6	Data output hold time	250	500	750	ns


^{*}Condition at SCLK=1MHz

发送端须同时满足 t1~t5 的参数要求


电路

DS90LV048具有内置终端电阻,电路设计和布局布线只需注意匹配100欧姆差分阻抗

接收端

发送端

^{**}Limit value