tobacoo-industry/03_data_update.ipynb
FEIJINTI a42fcb3438 修改灵敏度
修改灵敏度为32,删去了问题数据
2022-06-20 15:12:45 +08:00

300 lines
6.3 KiB
Plaintext
Executable File

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": true,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# 数据集扩充"
]
},
{
"cell_type": "markdown",
"source": [
"虽然当前的模型已经能够达到较好的效果,但是还不够好,对于一些较老的烟梗不能够做到有效的判别,我们为此增加数据集。"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 49,
"outputs": [],
"source": [
"import os\n",
"\n",
"import cv2\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"\n",
"from utils import read_raw_file, split_xy, generate_tobacco_label, generate_impurity_label\n",
"from models import SpecDetector\n",
"import pickle"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 50,
"outputs": [],
"source": [
"# some parameters\n",
"new_spectra_file = r\"F:\\zhouchao\\615\\calibrated0.raw\"\n",
"new_label_file = r\"F:\\zhouchao\\615\\label0.bmp\"\n",
"\n",
"target_class = 0\n",
"target_class_left, target_class_right = 5, 4\n",
"light_threshold = 0.5\n",
"add_background = False\n",
"\n",
"split_line = 500\n",
"\n",
"\n",
"blk_sz, sensitivity = 8, 32\n",
"selected_bands = [127, 201, 202, 294]\n",
"tree_num = 185\n",
"\n",
"pic_row, pic_col= 600, 1024\n",
"\n",
"color_dict = {(0, 0, 255): 1, (255, 255, 255): 0, (0, 255, 0): 2, (255, 0, 0): 1, (0, 255, 255): 4,\n",
" (255, 255, 0): 5, (255, 0, 255): 6}\n",
"\n",
"new_dataset_file = f'./dataset/data_{blk_sz}x{blk_sz}_c{len(selected_bands)}_sen{sensitivity}_4.p'\n",
"dataset_file = f'./dataset/data_{blk_sz}x{blk_sz}_c{len(selected_bands)}_sen{sensitivity}_3.p'\n",
"\n",
"model_file = f'./models/rf_{blk_sz}x{blk_sz}_c{len(selected_bands)}_{tree_num}_sen{sensitivity}_3.model'\n",
"# selected_bands = None"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 51,
"outputs": [],
"source": [
"data = read_raw_file(new_spectra_file, selected_bands)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"## 烟梗标签生成\n",
"这会将纯烟梗图片中识别为杂质的部分提取出来"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 52,
"outputs": [],
"source": [
"x_list, y_list = [], []\n",
"if (new_label_file is None) and (target_class == 1):\n",
" x_list, y_list = generate_tobacco_label(data, model_file, blk_sz, selected_bands)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"## 其他类别杂质阈值分割\n",
"通过阈值分割的形式获取其他类别的杂质"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 53,
"outputs": [],
"source": [
"if (new_label_file is None) and (target_class != 1):\n",
" img = generate_impurity_label(data, light_threshold, color_dict,\n",
" target_class_right=target_class_right,\n",
" target_class_left=target_class_left,\n",
" split_line=split_line)\n",
" root, _ = os.path.splitext(new_dataset_file)\n",
" cv2.imwrite(root+\"_generated.bmp\", img)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"## 读取标签"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 54,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(600, 1024, 3)\n"
]
}
],
"source": [
"if new_label_file is not None:\n",
" label = cv2.imread(new_label_file)\n",
" print(label.shape)\n",
" x_list, y_list = split_xy(data, label, blk_sz, sensitivity=sensitivity, color_dict=color_dict, add_background=add_background)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 55,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"301 301\n"
]
}
],
"source": [
"print(len(x_list), len(y_list))"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"## 读取旧数据合并"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 56,
"outputs": [],
"source": [
"with open(dataset_file, 'rb') as f:\n",
" x, y = pickle.load(f)\n",
"x.extend(x_list)\n",
"y.extend(y_list)\n",
"with open(new_dataset_file, 'wb') as f:\n",
" pickle.dump((x, y), f)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"## 批量数据的处理"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 56,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}