tobacoo-industry/01_dataset_building.ipynb
FEIJINTI a42fcb3438 修改灵敏度
修改灵敏度为32,删去了问题数据
2022-06-20 15:12:45 +08:00

149 lines
3.1 KiB
Plaintext
Executable File

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": true,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# 数据集的制作"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"import pickle\n",
"import cv2\n",
"import numpy as np\n",
"from utils import split_xy"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"# 一些参数\n",
"blk_sz = 8\n",
"sensitivity = 32\n",
"selected_bands = [127, 201, 202, 294]\n",
"# [76, 146, 216, 367, 383, 406]\n",
"file_name, labeled_image_file = r\"F:\\zhouchao\\616\\calibrated1.raw\", \\\n",
"r\"F:\\zhouchao\\616\\label1.bmp\"\n",
"# file_name, labeled_image_file = \"./dataset/calibrated77.raw\", \"./dataset/label77.png\"\n",
"dataset_file = f'./dataset/data_{blk_sz}x{blk_sz}_c{len(selected_bands)}_sen{sensitivity}_1.p'"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"## 波长选择"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"with open(file_name, \"rb\") as f:\n",
" data = np.frombuffer(f.read(), dtype=np.float32).reshape((600, 448, 1024)).transpose(0, 2, 1)\n",
"data = data[..., selected_bands]\n",
"label = cv2.imread(labeled_image_file)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## 块分割与数据存储"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"color_dict = {(0, 0, 255): 1, (255, 255, 255): 0, (0, 255, 0): 2, (255, 0, 0): 1, (0, 255, 255): 4,\n",
" (255, 255, 0): 5, (255, 0, 255): 6}\n",
"x, y = split_xy(data, label, blk_sz, sensitivity=sensitivity, color_dict=color_dict)\n",
"with open(dataset_file, 'wb') as f:\n",
" pickle.dump((x, y), f)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.7 ('base')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
},
"vscode": {
"interpreter": {
"hash": "7f619fc91ee8bdab81d49e7c14228037474662e3f2d607687ae505108922fa06"
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}