import os import time import numpy as np from models import SpecDetector, PixelWisedDetector from root_dir import ROOT_DIR from multiprocessing import Process, Pipe from multiprocessing.connection import Connection nrows, ncols, nbands = 256, 1024, 4 img_fifo_path = "/tmp/dkimg.fifo" mask_fifo_path = "/tmp/dkmask.fifo" cmd_fifo_path = '/tmp/tobacco_cmd.fifo' pxl_model_path = "rf_1x1_c4_1_sen1_4.model" blk_model_path = "rf_8x8_c4_185_sen32_4.model" def main(pxl_model_path=pxl_model_path, blk_model_path=blk_model_path): # make fifos to communicate with the child model processes blk_img_pipe_parent, blk_img_img_pipe_child = Pipe() blk_msk_pipe_parent, blk_msk_pipe_child = Pipe() blk_cmd_pipe_parent, blk_cmd_pipe_child = Pipe() blk_process = Process(target=model_process_func, args=(blk_cmd_pipe_child, blk_img_img_pipe_child, blk_msk_pipe_child, "blk", blk_model_path, )) pxl_img_pipe_parent, pxl_img_img_pipe_child = Pipe() pxl_msk_pipe_parent, pxl_msk_pipe_child = Pipe() pxl_cmd_pipe_parent, pxl_cmd_pipe_child = Pipe() pxl_process = Process(target=model_process_func, args=(pxl_cmd_pipe_child, pxl_img_img_pipe_child, pxl_cmd_pipe_child, "pxl", blk_model_path, )) blk_process.start() pxl_process.start() total_len = nrows * ncols * nbands * 4 if not os.access(img_fifo_path, os.F_OK): os.mkfifo(img_fifo_path, 0o777) if not os.access(mask_fifo_path, os.F_OK): os.mkfifo(mask_fifo_path, 0o777) data = b'' while True: fd_img = os.open(img_fifo_path, os.O_RDONLY) while len(data) < total_len: data += os.read(fd_img, total_len) if len(data) > total_len: data_total = data[:total_len] data = data[total_len:] else: data_total = data data = b'' os.close(fd_img) t1 = time.time() img = np.frombuffer(data_total, dtype=np.float32).reshape((nrows, nbands, -1)).transpose(0, 2, 1) print(f"get img shape {img.shape}") pxl_img_queue.put(img) blk_img_queue.put(img) pxl_msk = pxl_msk_queue.get() blk_msk = blk_msk_queue.get() mask = pxl_msk & blk_msk print(f"predict success get mask shape: {mask.shape}") print(f"Time: {time.time() - t1}") # 写出 fd_mask = os.open(mask_fifo_path, os.O_WRONLY) os.write(fd_mask, mask.tobytes()) os.close(fd_mask) def model_process_func(cmd_pipe: Connection, img_pipe: Connection, msk_pipe: Connection, model_cls: str, model_path=pxl_model_path): assert model_cls in ['pxl', 'blk'] if model_cls == 'pxl': model = PixelWisedDetector(os.path.join(ROOT_DIR, "models", model_path), blk_sz=1, channel_num=4) else: model = SpecDetector(os.path.join(ROOT_DIR, "models", model_path), blk_sz=8, channel_num=4) _ = model.predict(np.ones((nrows, ncols, nbands))) rigor_rate = 70 while True: # deal with the cmd if cmd_queue is not empty if not cmd_pipe.poll(): cmd = cmd_pipe.recv() if isinstance(cmd, int): rigor_rate = cmd elif isinstance(cmd, str): if cmd == 'stop': break else: try: if model_cls == 'pxl': model = PixelWisedDetector(os.path.join(ROOT_DIR, "models", model_path), blk_sz=1, channel_num=4) else: model = SpecDetector(os.path.join(ROOT_DIR, "models", model_path), blk_sz=8, channel_num=4) except Exception as e: print(f"Load Model Failed! {e}") # deal with the img if img_queue is not empty if not img_pipe.poll(): t1 = time.time() img = img_pipe.recv() t2 = time.time() mask = model.predict(img, rigor_rate) t3 = time.time() msk_pipe.send(mask) t4 = time.time() print(f"{model_cls} model recv time: {(t2 - t1) * 1000}ms\n" f"{model_cls} model predict time: {(t3 - t2) * 1000}ms\n" f"{model_cls} model send time: {(t4 - t3) * 1000}ms") if __name__ == '__main__': main()