mirror of
https://github.com/NanjingForestryUniversity/supermachine-tobacco.git
synced 2025-11-08 22:33:54 +00:00
148 lines
5.2 KiB
Python
Executable File
148 lines
5.2 KiB
Python
Executable File
# -*- codeing = utf-8 -*-
|
||
# Time : 2022/7/18 9:46
|
||
# @Auther : zhouchao
|
||
# @File: utils.py
|
||
# @Software:PyCharm
|
||
import glob
|
||
import os
|
||
from queue import Queue
|
||
|
||
import cv2
|
||
import numpy as np
|
||
from matplotlib import pyplot as plt
|
||
import re
|
||
|
||
|
||
def natural_sort(l):
|
||
convert = lambda text: int(text) if text.isdigit() else text.lower()
|
||
alphanum_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]
|
||
return sorted(l, key=alphanum_key)
|
||
|
||
|
||
class MergeDict(dict):
|
||
def __init__(self):
|
||
super(MergeDict, self).__init__()
|
||
|
||
def merge(self, merged: dict):
|
||
for k, v in merged.items():
|
||
if k not in self.keys():
|
||
self.update({k: v})
|
||
else:
|
||
original = self.__getitem__(k)
|
||
new_value = np.concatenate([original, v], axis=0)
|
||
self.update({k: new_value})
|
||
return self
|
||
|
||
|
||
class ImgQueue(Queue):
|
||
"""
|
||
A custom queue subclass that provides a :meth:`clear` method.
|
||
"""
|
||
|
||
def clear(self):
|
||
"""
|
||
Clears all items from the queue.
|
||
"""
|
||
|
||
with self.mutex:
|
||
unfinished = self.unfinished_tasks - len(self.queue)
|
||
if unfinished <= 0:
|
||
if unfinished < 0:
|
||
raise ValueError('task_done() called too many times')
|
||
self.all_tasks_done.notify_all()
|
||
self.unfinished_tasks = unfinished
|
||
self.queue.clear()
|
||
self.not_full.notify_all()
|
||
|
||
def safe_put(self, item):
|
||
if self.full():
|
||
_ = self.get()
|
||
return False
|
||
self.put(item)
|
||
return True
|
||
|
||
|
||
def read_labeled_img(dataset_dir: str, color_dict: dict, ext='.bmp', is_ps_color_space=True) -> dict:
|
||
"""
|
||
根据dataset_dir下的文件创建数据集
|
||
|
||
:param dataset_dir: 文件夹名称,文件夹内必须包含'label'和'label'两个文件夹,并分别存放同名的图像与标签
|
||
:param color_dict: 进行标签图像的颜色查找
|
||
:param ext: 图片后缀名,默认为.bmp
|
||
:param is_ps_color_space: 是否使用ps的标准lab色彩空间,默认True
|
||
:return: 字典形式的数据集{label: vector(n x 3)},vector为lab色彩空间
|
||
"""
|
||
img_names = [img_name for img_name in os.listdir(os.path.join(dataset_dir, 'label'))
|
||
if img_name.endswith(ext)]
|
||
total_dataset = MergeDict()
|
||
for img_name in img_names:
|
||
img_path, label_path = [os.path.join(dataset_dir, folder, img_name) for folder in ['img', 'label']]
|
||
# 读取图片和色彩空间转换
|
||
img = cv2.imread(img_path)
|
||
label_img = cv2.imread(label_path)
|
||
img = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
|
||
# 从opencv的色彩空间到Photoshop的色彩空间
|
||
if is_ps_color_space:
|
||
alpha, beta = np.array([100 / 255, 1, 1]), np.array([0, -128, -128])
|
||
img = img * alpha + beta
|
||
img = np.asarray(np.round(img, 0), dtype=int)
|
||
dataset = {label: img[np.all(label_img == color, axis=2)] for color, label in color_dict.items()}
|
||
total_dataset.merge(dataset)
|
||
return total_dataset
|
||
|
||
|
||
def lab_scatter(dataset: dict, class_max_num=None, is_3d=False, is_ps_color_space=True, **kwargs):
|
||
"""
|
||
在lab色彩空间内绘制3维数据分布情况
|
||
|
||
:param dataset: 字典形式的数据集{label: vector(n x 3)},vector为lab色彩空间
|
||
:param class_max_num: 每个类别最多画的样本数量,默认不限制
|
||
:param is_3d: 进行lab三维绘制或者a,b两通道绘制
|
||
:param is_ps_color_space: 是否使用ps的标准lab色彩空间,默认True
|
||
:return: None
|
||
"""
|
||
# 观察色彩分布情况
|
||
fig = plt.figure()
|
||
if is_3d:
|
||
ax = fig.add_subplot(projection='3d')
|
||
else:
|
||
ax = fig.add_subplot()
|
||
for label, data in dataset.items():
|
||
if class_max_num is not None:
|
||
assert isinstance(class_max_num, int)
|
||
if data.shape[0] > class_max_num:
|
||
sample_idx = np.arange(data.shape[0])
|
||
sample_idx = np.random.choice(sample_idx, class_max_num)
|
||
data = data[sample_idx, :]
|
||
l, a, b = [data[:, i] for i in range(3)]
|
||
if is_3d:
|
||
ax.scatter(a, b, l, label=label, alpha=0.1)
|
||
else:
|
||
ax.scatter(a, b, label=label, alpha=0.1)
|
||
x_max, x_min, y_max, y_min, z_max, z_min = [127, -127, 127, -127, 100, 0] if is_ps_color_space else \
|
||
[255, 0, 255, 0, 255, 0]
|
||
ax.set_xlim(x_min, x_max)
|
||
ax.set_ylim(y_min, y_max)
|
||
ax.set_xlabel('a*')
|
||
ax.set_ylabel('b*')
|
||
if is_3d:
|
||
ax.set_zlim(z_min, z_max)
|
||
ax.set_zlabel('L')
|
||
plt.legend()
|
||
plt.show()
|
||
|
||
|
||
def size_threshold(img, blk_size, threshold):
|
||
mask = img.reshape(img.shape[0], img.shape[1] // blk_size, blk_size).sum(axis=2). \
|
||
reshape(img.shape[0] // blk_size, blk_size, img.shape[1] // blk_size).sum(axis=1)
|
||
mask[mask <= threshold] = 0
|
||
mask[mask > threshold] = 1
|
||
return mask
|
||
|
||
|
||
if __name__ == '__main__':
|
||
color_dict = {(0, 0, 255): "yangeng", (255, 0, 0): "bejing", (0, 255, 0): "hongdianxian",
|
||
(255, 0, 255): "chengsebangbangtang", (0, 255, 255): "lvdianxian"}
|
||
dataset = read_labeled_img("data/dataset", color_dict=color_dict, is_ps_color_space=False)
|
||
lab_scatter(dataset, class_max_num=20000, is_3d=False, is_ps_color_space=False)
|