{ "cells": [ { "cell_type": "markdown", "source": [ "# 训练像素模型\n", "用这个文件可以训练出需要使用的光谱像素点模型" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 1, "outputs": [ { "ename": "NotImplementedError", "evalue": "开发时和机器上部署的路径不同,请注意选择rgb_tobacco_model_path、rgb_background_model_path、ai_path后删除本行", "output_type": "error", "traceback": [ "\u001B[1;31m---------------------------------------------------------------------------\u001B[0m", "\u001B[1;31mNotImplementedError\u001B[0m Traceback (most recent call last)", "Input \u001B[1;32mIn [1]\u001B[0m, in \u001B[0;36m\u001B[1;34m()\u001B[0m\n\u001B[0;32m 1\u001B[0m \u001B[38;5;28;01mimport\u001B[39;00m \u001B[38;5;21;01mnumpy\u001B[39;00m \u001B[38;5;28;01mas\u001B[39;00m \u001B[38;5;21;01mnp\u001B[39;00m\n\u001B[0;32m 2\u001B[0m \u001B[38;5;28;01mimport\u001B[39;00m \u001B[38;5;21;01mpickle\u001B[39;00m\n\u001B[1;32m----> 3\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01mutils\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m read_envi_ascii\n\u001B[0;32m 4\u001B[0m \u001B[38;5;66;03m# from config import Config\u001B[39;00m\n\u001B[0;32m 5\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01mmodels\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m ManualTree\n", "File \u001B[1;32m~\\OneDrive - macrosolid\\PycharmProjects\\tobacco_color\\utils\\__init__.py:20\u001B[0m, in \u001B[0;36m\u001B[1;34m\u001B[0m\n\u001B[0;32m 17\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01mmatplotlib\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m pyplot \u001B[38;5;28;01mas\u001B[39;00m plt\n\u001B[0;32m 18\u001B[0m \u001B[38;5;28;01mimport\u001B[39;00m \u001B[38;5;21;01mre\u001B[39;00m\n\u001B[1;32m---> 20\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01mconfig\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m Config\n\u001B[0;32m 23\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21mnatural_sort\u001B[39m(l):\n\u001B[0;32m 24\u001B[0m \u001B[38;5;124;03m\"\"\"\u001B[39;00m\n\u001B[0;32m 25\u001B[0m \u001B[38;5;124;03m 自然排序\u001B[39;00m\n\u001B[0;32m 26\u001B[0m \u001B[38;5;124;03m :param l: 待排序\u001B[39;00m\n\u001B[0;32m 27\u001B[0m \u001B[38;5;124;03m :return:\u001B[39;00m\n\u001B[0;32m 28\u001B[0m \u001B[38;5;124;03m \"\"\"\u001B[39;00m\n", "File \u001B[1;32m~\\OneDrive - macrosolid\\PycharmProjects\\tobacco_color\\config.py:6\u001B[0m, in \u001B[0;36m\u001B[1;34m\u001B[0m\n\u001B[0;32m 1\u001B[0m \u001B[38;5;28;01mimport\u001B[39;00m \u001B[38;5;21;01mos\u001B[39;00m\n\u001B[0;32m 3\u001B[0m \u001B[38;5;28;01mimport\u001B[39;00m \u001B[38;5;21;01mnumpy\u001B[39;00m \u001B[38;5;28;01mas\u001B[39;00m \u001B[38;5;21;01mnp\u001B[39;00m\n\u001B[1;32m----> 6\u001B[0m \u001B[38;5;28;01mclass\u001B[39;00m \u001B[38;5;21;01mConfig\u001B[39;00m:\n\u001B[0;32m 7\u001B[0m \u001B[38;5;66;03m# 文件相关参数\u001B[39;00m\n\u001B[0;32m 8\u001B[0m nRows, nCols, nBands \u001B[38;5;241m=\u001B[39m \u001B[38;5;241m256\u001B[39m, \u001B[38;5;241m1024\u001B[39m, \u001B[38;5;241m22\u001B[39m\n\u001B[0;32m 9\u001B[0m nRgbRows, nRgbCols, nRgbBands \u001B[38;5;241m=\u001B[39m \u001B[38;5;241m1024\u001B[39m, \u001B[38;5;241m4096\u001B[39m, \u001B[38;5;241m3\u001B[39m\n", "File \u001B[1;32m~\\OneDrive - macrosolid\\PycharmProjects\\tobacco_color\\config.py:31\u001B[0m, in \u001B[0;36mConfig\u001B[1;34m()\u001B[0m\n\u001B[0;32m 28\u001B[0m spec_size_threshold \u001B[38;5;241m=\u001B[39m \u001B[38;5;241m3\u001B[39m\n\u001B[0;32m 30\u001B[0m \u001B[38;5;66;03m# rgb模型参数\u001B[39;00m\n\u001B[1;32m---> 31\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m \u001B[38;5;167;01mNotImplementedError\u001B[39;00m(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m开发时和机器上部署的路径不同,请注意选择rgb_tobacco_model_path、rgb_background_model_path、ai_path后删除本行\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n\u001B[0;32m 32\u001B[0m \u001B[38;5;66;03m# rgb_tobacco_model_path = r\"weights/tobacco_dt_2022-08-27_14-43.model\" # 开发时的路径\u001B[39;00m\n\u001B[0;32m 33\u001B[0m \u001B[38;5;66;03m# rgb_tobacco_model_path = r\"/home/dt/tobacco-color/weights/tobacco_dt_2022-08-27_14-43.model\" # 机器上部署的路径\u001B[39;00m\n\u001B[0;32m 34\u001B[0m \u001B[38;5;66;03m# rgb_background_model_path = r\"weights/background_dt_2022-08-22_22-15.model\" # 开发时的路径\u001B[39;00m\n\u001B[0;32m 35\u001B[0m \u001B[38;5;66;03m# rgb_background_model_path = r\"/home/dt/tobacco-color/weights/background_dt_2022-08-22_22-15.model\" # 机器上部署的路径\u001B[39;00m\n\u001B[0;32m 36\u001B[0m threshold_low, threshold_high \u001B[38;5;241m=\u001B[39m \u001B[38;5;241m10\u001B[39m, \u001B[38;5;241m230\u001B[39m\n", "\u001B[1;31mNotImplementedError\u001B[0m: 开发时和机器上部署的路径不同,请注意选择rgb_tobacco_model_path、rgb_background_model_path、ai_path后删除本行" ] } ], "source": [ "import numpy as np\n", "import pickle\n", "from utils import read_envi_ascii\n", "from config import Config\n", "from models import ManualTree" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "# 一些变量" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 4, "outputs": [], "source": [ "data_path = r'data/envi20220802.txt'\n", "name_dict = {'tobacco': 1, 'yantou':2, 'kazhi':3, 'bomo':4, 'jiaodai':5, 'background':0}" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "# 构建数据集" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 5, "outputs": [], "source": [ "data = read_envi_ascii(data_path)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 6, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "zibian (569, 448)\n", "tobacco (1457, 448)\n", "yantou (354, 448)\n", "kazhi (449, 448)\n", "bomo (1154, 448)\n", "jiaodai (566, 448)\n", "background (1235, 448)\n" ] } ], "source": [ "_ = [print(class_name, d.shape) for class_name, d in data.items()]" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 7, "outputs": [], "source": [ "data_x = [d for class_name, d in data.items() if class_name in name_dict.keys()]\n", "data_y = [np.ones((d.shape[0], ))*name_dict[class_name] for class_name, d in data.items() if class_name in name_dict.keys()]\n", "data_x, data_y = np.concatenate(data_x), np.concatenate(data_y)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "## 取出需要的22个特征谱段" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 8, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "这些是现在的数据: (5215, 448) (5215,)\n", "截取其中需要的部分后: (5215, 22) (5215,)\n" ] } ], "source": [ "print(\"这些是现在的数据: \", data_x.shape, data_y.shape)\n", "data_x_cut = data_x[..., Config.bands]\n", "print(\"截取其中需要的部分后: \", data_x_cut.shape, data_y.shape)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "## 进行样本平衡" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 9, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "这是重采样后的数据: (8742, 22) (8742,)\n" ] } ], "source": [ "from imblearn.over_sampling import RandomOverSampler\n", "ros = RandomOverSampler(random_state=0)\n", "x_resampled, y_resampled = ros.fit_resample(data_x_cut, data_y)\n", "print('这是重采样后的数据: ', x_resampled.shape, y_resampled.shape)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "# 进行模型训练\n", "分出一部分数据进行训练" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 10, "outputs": [], "source": [ "from models import DecisionTree\n", "from sklearn.model_selection import train_test_split" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 11, "outputs": [], "source": [ "train_x, test_x, train_y, test_y = train_test_split(x_resampled, y_resampled, test_size=0.2)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 12, "outputs": [], "source": [ "tree = DecisionTree(class_weight={1:20})" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 13, "outputs": [], "source": [ "tree = tree.fit(train_x, train_y)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "# 模型评估" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "markdown", "source": [ "## 多分类精度" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 14, "outputs": [], "source": [ "pred_y = tree.predict(test_x)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 15, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0.0 1.00 1.00 1.00 312\n", " 1.0 0.98 0.97 0.98 289\n", " 2.0 0.97 1.00 0.99 312\n", " 3.0 0.95 0.99 0.97 278\n", " 4.0 0.98 0.92 0.95 288\n", " 5.0 0.98 0.98 0.98 270\n", "\n", " accuracy 0.98 1749\n", " macro avg 0.98 0.98 0.98 1749\n", "weighted avg 0.98 0.98 0.98 1749\n", "\n" ] } ], "source": [ "from sklearn.metrics import classification_report\n", "\n", "print(classification_report(y_pred=pred_y, y_true=test_y))" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "## 二分类精度" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 16, "outputs": [], "source": [ "test_y[test_y <= 1] = 0\n", "test_y[test_y > 1] = 1\n", "pred_y = tree.predict_bin(test_x)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 17, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0.0 1.00 1.00 1.00 598\n", " 1.0 1.00 1.00 1.00 1151\n", "\n", " accuracy 1.00 1749\n", " macro avg 1.00 1.00 1.00 1749\n", "weighted avg 1.00 1.00 1.00 1749\n", "\n" ] } ], "source": [ "print(classification_report(y_true=pred_y, y_pred=pred_y))" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "# 模型保存" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 18, "outputs": [], "source": [ "import datetime\n", "\n", "path = datetime.datetime.now().strftime(f\"models/pixel_%Y-%m-%d_%H-%M.model\")\n", "with open(path, 'wb') as f:\n", " pickle.dump(tree, f)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 8, "outputs": [], "source": [ "from models import DecisionTree\n", "from sklearn.model_selection import train_test_split" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 9, "outputs": [], "source": [ "train_x, test_x, train_y, test_y = train_test_split(x_resampled, y_resampled, test_size=0.2)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 11, "outputs": [], "source": [ "tree = DecisionTree(class_weight={1:20})" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 12, "outputs": [], "source": [ "tree = tree.fit(train_x, train_y)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "# 模型评估" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "markdown", "source": [ "## 多分类精度" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 13, "outputs": [], "source": [ "pred_y = tree.predict(test_x)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 14, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0.0 1.00 1.00 1.00 304\n", " 1.0 0.97 0.98 0.97 275\n", " 2.0 0.98 1.00 0.99 297\n", " 3.0 0.95 0.99 0.97 293\n", " 4.0 0.98 0.91 0.95 316\n", " 5.0 0.98 0.98 0.98 264\n", "\n", " accuracy 0.98 1749\n", " macro avg 0.98 0.98 0.98 1749\n", "weighted avg 0.98 0.98 0.98 1749\n", "\n" ] } ], "source": [ "from sklearn.metrics import classification_report\n", "\n", "print(classification_report(y_pred=pred_y, y_true=test_y))" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "## 二分类精度" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 19, "outputs": [], "source": [ "test_y[test_y <= 1] = 0\n", "test_y[test_y > 1] = 1\n", "pred_y = tree.predict_bin(test_x)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 20, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0.0 1.00 1.00 1.00 582\n", " 1.0 1.00 1.00 1.00 1167\n", "\n", " accuracy 1.00 1749\n", " macro avg 1.00 1.00 1.00 1749\n", "weighted avg 1.00 1.00 1.00 1749\n", "\n" ] } ], "source": [ "print(classification_report(y_true=pred_y, y_pred=pred_y))" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "# 模型保存" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": 22, "outputs": [], "source": [ "import datetime\n", "\n", "path = datetime.datetime.now().strftime(f\"models/pixel_%Y-%m-%d_%H-%M.model\")\n", "with open(path, 'wb') as f:\n", " pickle.dump(tree, f)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }