屏蔽了右侧10个喷阀

This commit is contained in:
FEIJINTI 2023-03-17 13:25:05 +08:00
parent 2af3d8091f
commit f2c614dbcf
2 changed files with 6 additions and 22 deletions

View File

@ -12,24 +12,8 @@
},
{
"cell_type": "code",
"execution_count": 1,
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\FEIJINTI\\miniconda3\\envs\\cv\\lib\\site-packages\\tqdm\\auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training env\n"
]
}
],
"execution_count": 7,
"outputs": [],
"source": [
"import numpy as np\n",
"import scipy\n",
@ -46,7 +30,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 8,
"outputs": [],
"source": [
"train_from_existed = False # 是否从现有数据训练如果是的话那就从dataset_file训练否则就用data_dir里头的数据\n",
@ -86,7 +70,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 9,
"outputs": [],
"source": [
"dataset = read_labeled_img(data_dir, color_dict=color_dict, is_ps_color_space=False)\n",
@ -193,7 +177,7 @@
" data = scipy.io.loadmat(dataset_file)\n",
" x, y = data['x'], data['y'].ravel()\n",
" model.fit(x, y=y, is_generate_negative=False, model_selection='dt')\n",
"else:8\n",
"else:\n",
" world_boundary = np.array([0, 0, 0, 255, 255, 255])\n",
" model.fit(x, world_boundary, threshold, negative_sample_size=negative_sample_num, train_size=0.7,\n",
" is_save_dataset=True, model_selection='dt')\n",

View File

@ -124,7 +124,7 @@ def main(only_spec=False, only_color=False, if_merge=False, interval_time=None,
mask_rgb = rgb_detector.predict(rgb_data).astype(np.uint8)
masks = [mask_spec, mask_rgb]
# 进行多个喷阀的合并
masks = [utils_customized.shield_valve(mask, left_shield=10) for mask in masks]
masks = [utils_customized.shield_valve(mask, left_shield=10, right_shield=10) for mask in masks]
masks = [utils_customized.valve_expend(mask) for mask in masks]
mask_nums = sum([np.sum(np.sum(mask)) for mask in masks])
log_time_count += 1