mirror of
https://github.com/NanjingForestryUniversity/supermachine-tobacco.git
synced 2025-11-08 14:23:55 +00:00
fix:更新23年12月现场参数:
光谱和rgb的lab参数 更新rgb背景模型 未在现场更新的参数: yolo模型 阈值 修正了yolo不起作用的问题
This commit is contained in:
parent
192bb8db99
commit
c391cfa7d9
14
config.py
14
config.py
@ -26,23 +26,23 @@ class Config:
|
||||
# blk_model_path = r"/home/dt/tobacco-color/weights/rf_4x4_c22_20_sen8_9.model" # 机器上部署的路径
|
||||
spec_size_threshold = 3
|
||||
|
||||
s_threshold_a = 125 # s_a的最高允许值
|
||||
s_threshold_b = 125 # s_b的最高允许值
|
||||
s_threshold_a = 124 # s_a的最高允许值
|
||||
s_threshold_b = 124 # s_b的最高允许值
|
||||
|
||||
# rgb模型参数
|
||||
rgb_tobacco_model_path = r"weights/tobacco_dt_2022-08-27_14-43.model" # 开发时的路径
|
||||
# rgb_tobacco_model_path = r"/home/dt/tobacco-color/weights/tobacco_dt_2022-08-27_14-43.model" # 机器上部署的路径
|
||||
rgb_background_model_path = r"weights/background_dt_2022-08-22_22-15.model" # 开发时的路径
|
||||
rgb_background_model_path = r"weights/background_dt_2023-12-26_20-39.model" # 开发时的路径
|
||||
# rgb_background_model_path = r"/home/dt/tobacco-color/weights/background_dt_2022-08-22_22-15.model" # 机器上部署的路径
|
||||
threshold_low, threshold_high = 10, 230
|
||||
threshold_s = 190 # 饱和度的最高允许值
|
||||
threshold_a = 127 # a的最高允许值
|
||||
threshold_b = 127 # b的最高允许值
|
||||
threshold_a = 125 # a的最高允许值
|
||||
threshold_b = 126 # b的最高允许值
|
||||
rgb_size_threshold = 6 # rgb的尺寸限制
|
||||
lab_size_threshold = 6 # lab的尺寸限制
|
||||
ai_path = 'weights/best0827.pt' # 开发时的路径
|
||||
ai_path = 'weights/best1227.pt' # 开发时的路径
|
||||
# ai_path = '/home/dt/tobacco-color/weights/best0827.pt' # 机器上部署的路径
|
||||
ai_conf_threshold = 0.6
|
||||
ai_conf_threshold = 0.8
|
||||
|
||||
# mask parameter
|
||||
target_size = (1024, 1024) # (Width, Height) of mask
|
||||
|
||||
@ -48,7 +48,8 @@ class SugarDetect(object):
|
||||
img = letterbox(img, (imgsz, imgsz), stride=stride)[0]
|
||||
|
||||
# Convert
|
||||
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
||||
# img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
||||
img = img.transpose(2, 0, 1) # to 3x416x416
|
||||
img = np.ascontiguousarray(img)
|
||||
|
||||
# Preprocess
|
||||
|
||||
Loading…
Reference in New Issue
Block a user