supermachine--tomato-passio.../20240529RGBtest3/xs/hsv.py
GG 828015c206 feat:新增百香果rgb部分代码;
refactor:重构部分代码逻辑
2024-06-04 22:51:02 +08:00

89 lines
3.5 KiB
Python

import cv2
import numpy as np
import matplotlib.pyplot as plt
import os
def create_mask(hsv_image, hue_value, hue_delta, value_target, value_delta):
# 创建H通道阈值掩码
lower_hue = np.array([hue_value - hue_delta, 0, 0])
upper_hue = np.array([hue_value + hue_delta, 255, 255])
hue_mask = cv2.inRange(hsv_image, lower_hue, upper_hue)
# 创建V通道排除中心值的掩码
lower_value_1 = np.array([0, 0, 0])
upper_value_1 = np.array([180, 255, value_target - value_delta])
lower_value_2 = np.array([0, 0, value_target + value_delta])
upper_value_2 = np.array([180, 255, 255])
value_mask_1 = cv2.inRange(hsv_image, lower_value_1, upper_value_1)
value_mask_1 = cv2.bitwise_not(value_mask_1)
cv2.imshow('value_mask_1', value_mask_1)
value_mask_2 = cv2.inRange(hsv_image, lower_value_2, upper_value_2)
cv2.imshow('value_mask_2', value_mask_2)
value_mask = cv2.bitwise_and(value_mask_1, value_mask_2)
cv2.imshow('value_mask', value_mask)
# 等待用户按下任意键
cv2.waitKey(0)
# 关闭所有窗口
cv2.destroyAllWindows()
# 合并H通道和V通道掩码
return cv2.bitwise_and(hue_mask, value_mask)
def apply_morphology(mask):
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
return cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
def find_largest_component(mask):
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(mask, 4, cv2.CV_32S)
if num_labels < 2:
return None # No significant components found
max_label = 1 + np.argmax(stats[1:, cv2.CC_STAT_AREA]) # Skip background
return (labels == max_label).astype(np.uint8) * 255
def process_image(image_path, hue_value=37, hue_delta=10, value_target=25, value_delta=10):
image = cv2.imread(image_path)
if image is None:
print(f"Error: Image at {image_path} could not be read.")
return None
hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
combined_mask = create_mask(hsv_image, hue_value, hue_delta, value_target, value_delta)
combined_mask = apply_morphology(combined_mask)
max_mask = find_largest_component(combined_mask)
cv2.imshow('max_mask', max_mask)
# 等待用户按下任意键
cv2.waitKey(0)
# 关闭所有窗口
cv2.destroyAllWindows()
if max_mask is None:
print(f"No significant components found in {image_path}.")
return None
result_image = cv2.bitwise_and(image, image, mask=max_mask)
result_image[max_mask == 0] = [255, 255, 255] # Set background to white
return result_image
def save_image(image, output_path):
cv2.imwrite(output_path, image)
def process_images_in_folder(input_folder, output_folder):
if not os.path.exists(output_folder):
os.makedirs(output_folder)
for filename in os.listdir(input_folder):
if filename.lower().endswith(".bmp"):
image_path = os.path.join(input_folder, filename)
result_image = process_image(image_path)
if result_image is not None:
output_path = os.path.join(output_folder, filename)
save_image(result_image, output_path)
print(f"Processed and saved {filename} to {output_folder}.")
# 主函数调用
input_folder = r'D:\project\supermachine--tomato-passion_fruit\20240529RGBtest3\data\passion_fruit_img' # 替换为你的输入文件夹路径
output_folder = r'D:\project\supermachine--tomato-passion_fruit\20240529RGBtest3\data\01' # 替换为你的输出文件夹路径
process_images_in_folder(input_folder, output_folder)