mirror of
https://github.com/NanjingForestryUniversity/supermachine--tomato-passion_fruit.git
synced 2025-11-08 22:34:00 +00:00
80 lines
2.4 KiB
Python
80 lines
2.4 KiB
Python
# -*- coding: utf-8 -*-
|
||
# @Time : 2024/6/17 下午3:36
|
||
# @Author : TG
|
||
# @File : config.py
|
||
# @Software: PyCharm
|
||
|
||
from root_dir import ROOT_DIR
|
||
|
||
class Config:
|
||
#文件相关参数
|
||
#预热参数
|
||
n_spec_rows, n_spec_cols, n_spec_bands = 25, 30, 13
|
||
n_rgb_rows, n_rgb_cols, n_rgb_bands = 613, 800, 3
|
||
tomato_img_dir = ROOT_DIR / 'models' / 'TO.bmp'
|
||
passion_fruit_img_dir = ROOT_DIR / 'models' / 'PF.bmp'
|
||
#模型路径
|
||
#糖度模型
|
||
brix_model_path = ROOT_DIR / 'models' / 'passion_fruit.joblib'
|
||
#图像分类模型
|
||
imgclassifier_model_path = ROOT_DIR / 'models' / 'resnet18pf20240705.pth'
|
||
imgclassifier_class_indices_path = ROOT_DIR / 'models' / 'class_indices.json'
|
||
|
||
#番茄初版实例分割叶片模型,实例分割叶片
|
||
# toseg_weights = ROOT_DIR / 'weights' / 'raw_seg_best.pt'
|
||
|
||
#20240711番茄新版实例分割模型,实例分割叶片、果蒂、果脐处
|
||
toseg_weights = ROOT_DIR / 'weights' / '20240711_seg_best.pt'
|
||
|
||
|
||
|
||
|
||
#番茄初版裂口目标检测模型,原始包含刀划伤的模型
|
||
# toobj_path = ROOT_DIR / 'weights' / 'raw_obj_best.pt'
|
||
|
||
#20240711番茄新版裂口目标检测模型,去除刀划伤的模型
|
||
# toobj_path = ROOT_DIR / 'weights' / '20240711_obj_best.pt'
|
||
|
||
#20240712番茄新版裂口目标检测模型,去除刀划伤的模型,新增加坑状破损样本
|
||
toobj_path = ROOT_DIR / 'weights' / '20240712_obj_best.pt'
|
||
|
||
|
||
#classifer.py参数
|
||
#tomato
|
||
find_reflection_threshold = 190
|
||
extract_g_r_factor = 1.5
|
||
|
||
#passion_fruit
|
||
hue_value = 37
|
||
hue_delta = 10
|
||
value_target = 25
|
||
value_delta = 10
|
||
|
||
#提取绿色像素参数
|
||
low_H = 0
|
||
low_S = 100
|
||
low_V = 0
|
||
high_H = 60
|
||
high_S = 180
|
||
high_V = 60
|
||
|
||
#spec_predict
|
||
#筛选谱段并未使用,在qt取数据时已经筛选
|
||
selected_bands = [8, 9, 10, 48, 49, 50, 77, 80, 103, 108, 115, 143, 145]
|
||
|
||
#data_processing
|
||
#根据标定数据计算的参数,实际长度/像素长度,单位cm
|
||
pixel_length_ratio = 6.3/425
|
||
#绿叶面积阈值,高于此阈值认为连通域是绿叶
|
||
area_threshold = 20000
|
||
#百香果密度(g/cm^3)
|
||
density = 0.652228972
|
||
#百香果面积比例,每个像素代表的实际面积(cm^2)
|
||
area_ratio = 0.00021973702422145334
|
||
|
||
#def analyze_tomato
|
||
#s_l通道阈值
|
||
threshold_s_l = 180
|
||
threshold_fore_g_r_t = 20
|
||
|