import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.svm import SVR from sklearn.neighbors import KNeighborsRegressor from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score from spec_read import all_spectral_data import joblib def prepare_data(data): """Reshape data and select specified spectral bands.""" selected_bands = [8, 9, 10, 48, 49, 50, 77, 80, 103, 108, 115, 143, 145] # 筛选特定的波段 data_selected = data[:, :, :, selected_bands] # 将筛选后的数据重塑为二维数组,每行代表一个样本 reshaped_data = data_selected.reshape(-1, 30 * 30 * len(selected_bands)) return reshaped_data def split_data(X, y, test_size=0.20, random_state=12): """Split data into training and test sets.""" return train_test_split(X, y, test_size=test_size, random_state=random_state) def evaluate_model(model, X_test, y_test): """Evaluate the model and return multiple metrics and predictions.""" y_pred = model.predict(X_test) mse = mean_squared_error(y_test, y_pred) mae = mean_absolute_error(y_test, y_pred) r2 = r2_score(y_test, y_pred) return mse, mae, r2, y_pred def print_predictions(y_test, y_pred, model_name): """Print actual and predicted values.""" print(f"Test Set Predictions for {model_name}:") for i, (real, pred) in enumerate(zip(y_test, y_pred)): print(f"Sample {i + 1}: True Value = {real:.2f}, Predicted Value = {pred:.2f}") def main(): sweetness_acidity = np.array([ 16.2, 16.1, 17, 16.9, 16.8, 17.8, 18.1, 17.2, 17, 17.2, 17.1, 17.2, 17.2, 17.2, 18.1, 17, 17.6, 17.4, 17.1, 17.1, 16.9, 17.6, 17.3, 16.3, 16.5, 18.7, 17.6, 16.2, 16.8, 17.2, 16.8, 17.3, 16, 16.6, 16.7, 16.7, 17.3, 16.3, 16.8, 17.4, 17.3, 16.3, 16.1, 17.2, 18.6, 16.8, 16.1, 17.2, 18.3, 16.5, 16.6, 17, 17, 17.8, 16.4, 18, 17.7, 17, 18.3, 16.8, 17.5, 17.7, 18.5, 18, 17.7, 17, 18.3, 18.1, 17.4, 17.7, 17.8, 16.3, 17.1, 16.8, 17.2, 17.5, 16.6, 17.7, 17.1, 17.7, 19.4, 20.3, 17.3, 15.8, 18, 17.7, 17.2, 15.2, 18, 18.4, 18.3, 15.7, 17.2, 18.6, 15.6, 17, 16.9, 17.4, 17.8, 16.5 ]) X = prepare_data(all_spectral_data) print(f'原数据尺寸:{all_spectral_data.shape};训练数据尺寸:{X.shape}') X_train, X_test, y_train, y_test = split_data(X, sweetness_acidity) models_params = { "RandomForest": { 'model': RandomForestRegressor(), 'params': { 'n_estimators': [100, 200, 300], 'max_depth': [None, 10, 20], 'min_samples_split': [2, 5], 'min_samples_leaf': [1, 2], 'random_state': [42] } }, "GradientBoosting": { 'model': GradientBoostingRegressor(), 'params': { 'n_estimators': [100, 200, 300], 'learning_rate': [0.01, 0.1, 0.2], 'max_depth': [3, 5, 7], 'min_samples_split': [2, 5], 'min_samples_leaf': [1, 2], 'random_state': [42] } }, "SVR": { 'model': SVR(), 'params': { 'C': [0.1, 1, 10, 100], 'gamma': ['scale', 'auto', 0.01, 0.1], 'epsilon': [0.01, 0.1, 0.5] } } } best_models = {} for model_name, mp in models_params.items(): grid_search = GridSearchCV(mp['model'], mp['params'], cv=5, scoring='r2', verbose=2) grid_search.fit(X_train, y_train) best_models[model_name] = grid_search.best_estimator_ mse, mae, r2, y_pred = evaluate_model(grid_search.best_estimator_, X_test, y_test) print(f"Best {model_name} parameters: {grid_search.best_params_}") print(f"Model: {model_name}") print(f"MSE on the test set: {mse}") print(f"MAE on the test set: {mae}") print(f"R² score on the test set: {r2}") print_predictions(y_test, y_pred, model_name) print("\n" + "-" * 50 + "\n") # Optionally save the best model for each type joblib.dump(grid_search.best_estimator_, f'{model_name}_best_model.joblib') if __name__ == "__main__": main()