mirror of
https://github.com/NanjingForestryUniversity/supermachine--tomato-passion_fruit.git
synced 2025-11-09 06:44:02 +00:00
fix:修复一点小瑕疵
This commit is contained in:
parent
0d10cf5d23
commit
606e5fbe7b
@ -382,7 +382,7 @@ class Spec_predict(object):
|
||||
'''
|
||||
# 对数据进行切片,筛选谱段
|
||||
#qt_test进行测试时如果读取的是(30,30,224)需要解开注释进行数据切片,筛选谱段
|
||||
data_x = data_x[ :25, :, setting.selected_bands ]
|
||||
# data_x = data_x[ :25, :, setting.selected_bands ]
|
||||
# 将筛选后的数据重塑为二维数组,每行代表一个样本
|
||||
data_x = data_x.reshape(-1, setting.n_spec_rows * setting.n_spec_cols * setting.n_spec_bands)
|
||||
data_y = self.model.predict(data_x)
|
||||
|
||||
@ -32,7 +32,7 @@ def main(is_debug=False):
|
||||
print('系统初始化中...')
|
||||
#模型预热
|
||||
#与qt_test测试时需要注释掉预热,模型接收尺寸为(25,30,13),qt_test发送的数据为(30,30,224),需要对数据进行切片(classifer.py第385行)
|
||||
# _ = detector.predict(np.ones((setting.n_spec_rows, setting.n_spec_cols, setting.n_spec_bands), dtype=np.uint16))
|
||||
_ = detector.predict(np.ones((setting.n_spec_rows, setting.n_spec_cols, setting.n_spec_bands), dtype=np.uint16))
|
||||
# _ = classifier.predict(np.ones((setting.n_rgb_rows, setting.n_rgb_cols, setting.n_rgb_bands), dtype=np.uint8))
|
||||
# _, _, _, _, _ =dp.analyze_tomato(cv2.imread(str(setting.tomato_img_dir)))
|
||||
# _, _, _, _, _ = dp.analyze_passion_fruit(cv2.imread(str(setting.passion_fruit_img_dir))
|
||||
|
||||
Loading…
Reference in New Issue
Block a user