mirror of
https://github.com/Karllzy/cotton_color.git
synced 2025-11-09 11:13:54 +00:00
199 lines
7.3 KiB
C++
199 lines
7.3 KiB
C++
#include <opencv2/opencv.hpp>
|
|
#include <opencv2/dnn/dnn.hpp>
|
|
#include <iostream>
|
|
|
|
// Parameters
|
|
const float CONFIDENCE_THRESHOLD = 0.2; // Confidence threshold
|
|
const float NMS_THRESHOLD = 0.2; // Non-maximum suppression threshold
|
|
const int INPUT_WIDTH = 640; // Model input width
|
|
const int INPUT_HEIGHT = 640; // Model input height
|
|
|
|
// Detection structure
|
|
struct Detection {
|
|
cv::Rect box;
|
|
float confidence;
|
|
};
|
|
|
|
class Timer {
|
|
public:
|
|
Timer() : start_time(std::chrono::high_resolution_clock::now()) {}
|
|
|
|
// Restart the timer
|
|
void restart() {
|
|
start_time = std::chrono::high_resolution_clock::now();
|
|
}
|
|
|
|
// Get and print the time elapsed since last start
|
|
void printElapsedTime(const std::string& message) {
|
|
auto end_time = std::chrono::high_resolution_clock::now();
|
|
std::chrono::duration<double> elapsed = end_time - start_time;
|
|
std::cout << message << ": " << elapsed.count() << " seconds" << std::endl;
|
|
// Restart the timer for the next measurement
|
|
start_time = end_time;
|
|
}
|
|
|
|
private:
|
|
std::chrono::high_resolution_clock::time_point start_time;
|
|
};
|
|
|
|
// Function to resize and pad the input image
|
|
cv::Mat resizeAndPad(const cv::Mat& image, int targetWidth, int targetHeight, int& padTop, int& padLeft, float& scale, const cv::Scalar& padColor) {
|
|
int originalWidth = image.cols;
|
|
int originalHeight = image.rows;
|
|
|
|
// Calculate scaling factor
|
|
scale = std::min((float)targetWidth / originalWidth, (float)targetHeight / originalHeight);
|
|
|
|
// New dimensions after scaling
|
|
int newWidth = static_cast<int>(originalWidth * scale);
|
|
int newHeight = static_cast<int>(originalHeight * scale);
|
|
|
|
// Resize the image
|
|
cv::Mat resizedImage;
|
|
cv::resize(image, resizedImage, cv::Size(newWidth, newHeight));
|
|
|
|
// Padding calculations
|
|
padTop = (targetHeight - newHeight) / 2;
|
|
int padBottom = targetHeight - newHeight - padTop;
|
|
padLeft = (targetWidth - newWidth) / 2;
|
|
int padRight = targetWidth - newWidth - padLeft;
|
|
|
|
// Add padding around the image (using gray color)
|
|
cv::Mat paddedImage;
|
|
cv::copyMakeBorder(resizedImage, paddedImage, padTop, padBottom, padLeft, padRight, cv::BORDER_CONSTANT, padColor);
|
|
|
|
return paddedImage;
|
|
}
|
|
|
|
// Function to create an image with only detected regions filled as white (rest black) in the original image size
|
|
cv::Mat createDetectionMask(const cv::Mat& originalImage, const std::vector<Detection>& detections, float scale, int padTop, int padLeft) {
|
|
// Create a black image with the same size as the original image
|
|
cv::Mat mask = cv::Mat::zeros(originalImage.size(), CV_8UC1); // Single channel for black and white mask
|
|
|
|
// Fill the detected regions with white
|
|
for (const auto& detection : detections) {
|
|
// Rescale the coordinates from the padded image back to the original image
|
|
int x = static_cast<int>((detection.box.x - padLeft) / scale);
|
|
int y = static_cast<int>((detection.box.y - padTop) / scale);
|
|
int w = static_cast<int>(detection.box.width / scale);
|
|
int h = static_cast<int>(detection.box.height / scale);
|
|
|
|
// Ensure coordinates are within the bounds of the original image
|
|
x = std::max(0, std::min(x, originalImage.cols - 1));
|
|
y = std::max(0, std::min(y, originalImage.rows - 1));
|
|
w = std::min(w, originalImage.cols - x);
|
|
h = std::min(h, originalImage.rows - y);
|
|
|
|
cv::rectangle(mask, cv::Rect(x, y, w, h), cv::Scalar(255), cv::FILLED); // White color for detections
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
int main() {
|
|
// Model and image paths
|
|
std::string modelPath = "C:\\Users\\zjc\\Desktop\\dimo_11.14.onnx";
|
|
std::string imagePath = "C:\\Users\\zjc\\Desktop\\dimo.bmp";
|
|
Timer timer1;
|
|
|
|
// Load the model
|
|
cv::dnn::Net net = cv::dnn::readNetFromONNX(modelPath);
|
|
net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA); // Use CUDA backend
|
|
net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA); // Run on GPU
|
|
timer1.printElapsedTime("Time to load the model");
|
|
|
|
// Read the input image
|
|
timer1.restart();
|
|
cv::Mat image = cv::imread(imagePath);
|
|
if (image.empty()) {
|
|
std::cerr << "Could not read the image: " << imagePath << std::endl;
|
|
return -1;
|
|
}
|
|
|
|
// Set padding color (gray)
|
|
cv::Scalar padColor(128, 128, 128);
|
|
|
|
// Preprocess image and add padding
|
|
int padTop, padLeft;
|
|
float scale;
|
|
cv::Mat inputImage = resizeAndPad(image, INPUT_WIDTH, INPUT_HEIGHT, padTop, padLeft, scale, padColor);
|
|
|
|
// Prepare image for model input
|
|
cv::Mat blob = cv::dnn::blobFromImage(inputImage, 1 / 255.0, cv::Size(INPUT_WIDTH, INPUT_HEIGHT), cv::Scalar(0, 0, 0), true, false);
|
|
net.setInput(blob);
|
|
|
|
timer1.printElapsedTime("Time to preprocess image");
|
|
|
|
for (int j = 0; j < 1; j++) {
|
|
// Run inference
|
|
cv::Mat output = net.forward();
|
|
|
|
// Process output data
|
|
std::vector<Detection> detections;
|
|
float* data = (float*)output.data;
|
|
|
|
for (int i = 0; i < 25200; ++i) {
|
|
float confidence = data[i * 6 + 4]; // Confidence score
|
|
if (confidence >= CONFIDENCE_THRESHOLD) {
|
|
// Get bounding box coordinates
|
|
float cx = data[i * 6];
|
|
float cy = data[i * 6 + 1];
|
|
float w = data[i * 6 + 2];
|
|
float h = data[i * 6 + 3];
|
|
|
|
// Map to image coordinates
|
|
cx = cx * inputImage.cols / INPUT_WIDTH;
|
|
cy = cy * inputImage.rows / INPUT_HEIGHT;
|
|
w = w * inputImage.cols / INPUT_WIDTH;
|
|
h = h * inputImage.rows / INPUT_HEIGHT;
|
|
|
|
int left = static_cast<int>(cx - w / 2);
|
|
int top = static_cast<int>(cy - h / 2);
|
|
int width = static_cast<int>(w);
|
|
int height = static_cast<int>(h);
|
|
|
|
left = std::max(0, std::min(left, inputImage.cols - 1));
|
|
top = std::max(0, std::min(top, inputImage.rows - 1));
|
|
width = std::min(width, inputImage.cols - left);
|
|
height = std::min(height, inputImage.rows - top);
|
|
|
|
// Add detection to vector
|
|
detections.push_back({cv::Rect(left, top, width, height), confidence});
|
|
}
|
|
}
|
|
|
|
// Non-Maximum Suppression
|
|
std::vector<int> indices;
|
|
std::vector<cv::Rect> boxes;
|
|
std::vector<float> scores;
|
|
|
|
for (const auto& detection : detections) {
|
|
boxes.push_back(detection.box);
|
|
scores.push_back(detection.confidence);
|
|
}
|
|
|
|
cv::dnn::NMSBoxes(boxes, scores, CONFIDENCE_THRESHOLD, NMS_THRESHOLD, indices);
|
|
std::cout << "Number of detections after NMS: " << indices.size() << std::endl;
|
|
|
|
std::vector<Detection> finalDetections;
|
|
for (int idx : indices) {
|
|
finalDetections.push_back(detections[idx]);
|
|
}
|
|
|
|
// Create the mask for the detected regions (matching original image size)
|
|
cv::Mat detectionMask = createDetectionMask(image, finalDetections, scale, padTop, padLeft);
|
|
|
|
// Show the mask
|
|
cv::imshow("Detection Mask", detectionMask);
|
|
|
|
// Save the result as an image
|
|
std::string savepath = "C:\\Users\\zjc\\Desktop\\suspect_mask.png";
|
|
cv::imwrite(savepath, detectionMask);
|
|
|
|
timer1.printElapsedTime("Time to run inference");
|
|
}
|
|
|
|
cv::waitKey(0);
|
|
|
|
return 0;
|
|
} |