cotton_color/opencv_onnx.cpp

199 lines
7.4 KiB
C++

//
// Created by zjc on 24-11-19.
//
#include <opencv2/opencv.hpp>
#include <opencv2/dnn/dnn.hpp>
#include <iostream>
// 参数
const float CONFIDENCE_THRESHOLD = 0.2; // 置信度阈值
const float NMS_THRESHOLD = 0.2; // 非极大值抑制阈值
const int INPUT_WIDTH = 640; // 模型输入宽度
const int INPUT_HEIGHT = 640; // 模型输入高度
// 检测结构体
struct Detection {
cv::Rect box;
float confidence;
};
class Timer {
public:
Timer() : start_time(std::chrono::high_resolution_clock::now()) {}
// 重新启动定时器
void restart() {
start_time = std::chrono::high_resolution_clock::now();
}
// 获取并打印从上次启动到当前的时间差
void printElapsedTime(const std::string& message) {
auto end_time = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed = end_time - start_time;
std::cout << message << ": " << elapsed.count() << " seconds" << std::endl;
// 重新启动定时器以供下次测量
start_time = end_time;
}
private:
std::chrono::high_resolution_clock::time_point start_time;
};
// 在图像上绘制检测框
void drawDetections(cv::Mat& inputImage, const std::vector<Detection>& detections) {
for (const auto& detection : detections) {
cv::rectangle(inputImage, detection.box, cv::Scalar(0, 255, 0), 2);
std::string label = "Object: " + cv::format("%.2f", detection.confidence);
int baseLine;
cv::Size labelSize = cv::getTextSize(label, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
cv::rectangle(inputImage, cv::Point(detection.box.x, detection.box.y - labelSize.height - baseLine),
cv::Point(detection.box.x + labelSize.width, detection.box.y), cv::Scalar(0, 255, 0), cv::FILLED);
cv::putText(inputImage, label, cv::Point(detection.box.x, detection.box.y - baseLine), cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0), 1);
}
}
cv::Mat resizeAndPad(const cv::Mat& image, int targetWidth, int targetHeight, int& padTop, int& padLeft, float& scale, const cv::Scalar& padColor) {
int originalWidth = image.cols;
int originalHeight = image.rows;
// 计算缩放比例
scale = std::min((float)targetWidth / originalWidth, (float)targetHeight / originalHeight);
// 缩放后的新尺寸
int newWidth = static_cast<int>(originalWidth * scale);
int newHeight = static_cast<int>(originalHeight * scale);
// 缩放图像
cv::Mat resizedImage;
cv::resize(image, resizedImage, cv::Size(newWidth, newHeight));
// 计算填充值
padTop = (targetHeight - newHeight) / 2;
int padBottom = targetHeight - newHeight - padTop;
padLeft = (targetWidth - newWidth) / 2;
int padRight = targetWidth - newWidth - padLeft;
// 在图像周围添加填充,使用灰色 (128, 128, 128) 填充
cv::Mat paddedImage;
cv::copyMakeBorder(resizedImage, paddedImage, padTop, padBottom, padLeft, padRight, cv::BORDER_CONSTANT, padColor);
return paddedImage;
}
int main() {
// 模型路径和图片路径
std::string modelPath = "C:\\Users\\zjc\\Desktop\\dimo_11.14.onnx";
std::string imagePath = "C:\\Users\\zjc\\Desktop\\dimo.bmp";
Timer timer1;
// 加载模型
cv::dnn::Net net = cv::dnn::readNetFromONNX(modelPath);
// net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA); // 设置为使用 CUDA 后端
// net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA); // 设置为在 GPU 上运行
timer1.printElapsedTime("Time to load the model");
// 读取输入图像
timer1.restart();
cv::Mat image = cv::imread(imagePath);
if (image.empty()) {
std::cerr << "Could not read the image: " << imagePath << std::endl;
return -1;
}
// 设置填充颜色为灰色
cv::Scalar padColor(128, 128, 128);
// 预处理图像并添加填充
int padTop, padLeft;
float scale;
cv::Mat inputImage = resizeAndPad(image, INPUT_WIDTH, INPUT_HEIGHT, padTop, padLeft, scale, padColor);
// 显示调整和填充后的图像
// cv::imshow("Resized and Padded Image", inputImage);
// 预处理图像
cv::Mat blob = cv::dnn::blobFromImage(inputImage, 1 / 255.0, cv::Size(INPUT_WIDTH, INPUT_HEIGHT), cv::Scalar(0, 0, 0), true, false);
net.setInput(blob);
timer1.printElapsedTime("Time to preprocessing");
timer1.restart();
// 推理模型
cv::Mat output = net.forward();
// 处理输出数据
std::vector<Detection> detections;
float* data = (float*)output.data;
for (int i = 0; i < 25200; ++i) {
float confidence = data[i * 6 + 4]; // 置信度
if (confidence >= CONFIDENCE_THRESHOLD) {
// 获取检测框并映射到图像坐标
// Remove the unnecessary multiplication
float cx = data[i * 6];
float cy = data[i * 6 + 1];
float w = data[i * 6 + 2];
float h = data[i * 6 + 3];
// If needed, adjust for differences between input image size and model input size
// Since they are the same in your case, this step can be omitted or kept as is
cx = cx * inputImage.cols / INPUT_WIDTH;
cy = cy * inputImage.rows / INPUT_HEIGHT;
w = w * inputImage.cols / INPUT_WIDTH;
h = h * inputImage.rows / INPUT_HEIGHT;
// Proceed with the rest of your code
int left = static_cast<int>(cx - w / 2);
int top = static_cast<int>(cy - h / 2);
int width = static_cast<int>(w);
int height = static_cast<int>(h);
// Ensure coordinates are within image bounds
left = std::max(0, std::min(left, inputImage.cols - 1));
top = std::max(0, std::min(top, inputImage.rows - 1));
width = std::min(width, inputImage.cols - left);
height = std::min(height, inputImage.rows - top);
// Add detection
detections.push_back({cv::Rect(left, top, width, height), confidence});
}
}
// 非极大值抑制
std::vector<int> indices;
std::vector<cv::Rect> boxes;
std::vector<float> scores;
for (const auto& detection : detections) {
boxes.push_back(detection.box);
scores.push_back(detection.confidence);
}
cv::dnn::NMSBoxes(boxes, scores, CONFIDENCE_THRESHOLD, NMS_THRESHOLD, indices);
std::cout << "Number of detections after NMS: " << indices.size() << std::endl;
if (indices.empty()) {
std::cout << "No boxes passed NMS." << std::endl;
}
for (int idx : indices) {
Detection detection = detections[idx];
std::cout << "Drawing box at: (" << detection.box.x << ", " << detection.box.y
<< "), width: " << detection.box.width << ", height: " << detection.box.height << std::endl;
drawDetections(inputImage, {detection});
}
std::vector<Detection> finalDetections;
for (int idx : indices) {
finalDetections.push_back(detections[idx]);
}
for (int i = 0; i < 25200; ++i) {
float confidence = data[i * 6 + 4];
if (confidence >= CONFIDENCE_THRESHOLD) {
std::cout << "Detection " << i << ": confidence=" << confidence << std::endl;
}
}
// 绘制检测框并显示图像
drawDetections(image, finalDetections);
timer1.printElapsedTime("Time to run inference");
cv::imshow("Detections", inputImage);
cv::waitKey(0);
return 0;
}
//