# YOLO调试记录 ## data 数据yaml文件配置 ```python path: ../datasets/dimo4 train: D:\yolov5-master\datasets\dimo4\images\train val: D:\yolov5-master\datasets\dimo4\images\val test: # test images (optional) # Classes names: 0: dimo ``` ## 模型导出 ### 命令行形式 ```bash python export.py --weights runs/train/exp4/weights/best.pt --img 640 --batch 1 --device 0 --include onnx --opset 15 ``` weights地址: runs/train/exp4/weights/xxx.pt 路径中的模型为pt文件 在detect.py中batch为1 batch在detect中不能更改 ![image-20241113133535978](./README.assets/image-20241113133535978.png) ![1](./README.assets/1.png) ### PyCharm配置 ##### export.py ```bash --weights runs/train/exp4/weights/best.pt --img 640 --device0 --include onnx --opset 15 ``` ## 模型加载 ```bash --weights runs\train\exp4\weights\best.onnx --data D:\yolov5-master\data\dimo4.yaml ``` 在detect.py中 输入的模型为在train.py中训练好的模型 :地址: runs/train/exp4/weights/xxx.pt 或者 :runs/train/exp4/weights/xxx.onnx ![image-20241113133825646](./README.assets/image-20241113133825646.png) ![image-20241113133840896](./README.assets/image-20241113133840896.png) ![image-20241113133850391](./README.assets/image-20241113133850391.png)