# YOLO调试记录 ## data文件夹 yaml文件配置 该文件夹中配置的是数据集的路径及类别信息 ```python path: ../datasets/dimo4 train: D:\yolov5-master\datasets\dimo4\images\train val: D:\yolov5-master\datasets\dimo4\images\val test: # test images (optional) # Classes names: 0: dimo ``` ## 模型导出 ### 命令行形式 ```bash python export.py --weights runs/train/exp4/weights/best.pt --img 640 --batch 1 --device 0 --include onnx --opset 15 ``` 通过export.py导出的文件格式为onnx weights地址: runs/train/exp4/weights/xxx.pt best.pt为train.py训练后所得模型 在detect.py中batch为1,batch在detect中不能更改,所以在导出onnx模型文件时要设置batch 1 batch在detect中不能更改 ![image-20241113133535978](./README.assets/image-20241113133535978.png) ![1](./README.assets/1.png) ### PyCharm配置 ##### export.py ```bash --weights runs/train/exp4/weights/best.pt --img 640 --device0 --include onnx --opset 15 ``` ![image-20241113182234260](C:\Users\91492\AppData\Roaming\Typora\typora-user-images\image-20241113182234260.png) ## 模型加载 ### 命令行形式 ```bash python detect.py --weights runs\train\exp4\weights\best.onnx --data D:\yolov5- master\data\dimo4.yaml ``` ![image-20241113133825646](./README.assets/image-20241113133825646.png) ![image-20241113133840896](./README.assets/image-20241113133840896.png) ![image-20241113133850391](./README.assets/image-20241113133850391.png) ### PyCharm配置 ```bash --weights runs\train\exp4\weights\best.onnx --data D:\yolov5-master\data\dimo4.yaml ``` ![image-20241113182433935](C:\Users\91492\AppData\Roaming\Typora\typora-user-images\image-20241113182433935.png) 在detect.py中 输入的模型为在train.py中训练好的模型 :地址: runs/train/exp4/weights/xxx.pt 或者 :runs/train/exp4/weights/xxx.onnx ![image-20241113133825646](./README.assets/image-20241113133825646.png) ![image-20241113133840896](./README.assets/image-20241113133840896.png) ![image-20241113133850391](./README.assets/image-20241113133850391.png)