添加完整滴灌带分类可执行代码

This commit is contained in:
wrz1-zzzzz 2024-11-14 20:15:13 +08:00
parent 5f8ec2a9cd
commit ebd1f6924a
5 changed files with 245 additions and 0 deletions

Binary file not shown.

Binary file not shown.

62
DPL/dgd_class/predict.py Normal file
View File

@ -0,0 +1,62 @@
import torch
from PIL import Image
from torch import nn
import onnx
import onnxruntime as ort # 用于ONNX推理
from torchvision import datasets, models, transforms
import os
import matplotlib.pyplot as plt
from test import device, class_names, imshow
# 加载已训练的 ONNX 模型
def load_onnx_model(model_path='model/best_model_11.14.19.30.onnx'):
# 使用 ONNX Runtime 加载模型
session = ort.InferenceSession(model_path)
return session
# 预测函数
def visualize_model_predictions(onnx_session, img_path):
img = Image.open(img_path)
img = img.convert('RGB') # 转换为 RGB 模式
data_transforms = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
img = data_transforms(img)
img = img.unsqueeze(0)
img = img.to(device)
# 将输入转换为 ONNX 兼容的格式numpy 数组)
img = img.cpu().numpy()
# 使用 ONNX Runtime 进行推理
inputs = {onnx_session.get_inputs()[0].name: img}
outputs = onnx_session.run(None, inputs)
preds = outputs[0]
# 获取预测类别
_, predicted_class = torch.max(torch.tensor(preds), 1)
# 可视化结果
ax = plt.subplot(2, 2, 1)
ax.axis('off')
ax.set_title(f'Predicted: {class_names[predicted_class[0]]}')
imshow(img[0])
# 使用已训练的 ONNX 模型进行预测
if __name__ == '__main__':
# 加载 ONNX 模型
model_path = 'model/best_model_11.14.19.30.onnx'
onnx_session = load_onnx_model(model_path)
# 图像路径
img_path = 'd_2/train/dgd/transformed_1.jpg' # 更改为你的图像路径
visualize_model_predictions(onnx_session, img_path)

183
DPL/dgd_class/train.py Normal file
View File

@ -0,0 +1,183 @@
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
from PIL import Image
# 初始化 cudnn 优化
cudnn.benchmark = True
plt.ion() # interactive mode
data_transforms = {
'train': transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
data_dir = 'd_2'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
shuffle=True, num_workers=4)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
device = torch.device("cuda:0")
#
def imshow(inp, title=None):
"""Display image for Tensor."""
if isinstance(inp, np.ndarray):
inp = inp.transpose((1, 2, 0))
# inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001) # pause a bit so that plots are updated
def train_model(model, criterion, optimizer, scheduler, num_epochs=25, model_save_dir='model', save_onnx=False):
since = time.time()
# 创建保存模型的目录(如果不存在)
os.makedirs(model_save_dir, exist_ok=True)
# 设置模型保存路径
best_model_params_path = os.path.join(model_save_dir, 'best_model_params_11.14.19.30.pt')
best_model_onnx_path = os.path.join(model_save_dir, 'best_model_11.14.19.30.onnx')
# 初始保存模型
torch.save(model.state_dict(), best_model_params_path)
best_acc = 0.0
for epoch in range(num_epochs):
print(f'Epoch {epoch}/{num_epochs - 1}')
print('-' * 10)
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
# 保存最佳模型
torch.save(model.state_dict(), best_model_params_path)
# 如果需要保存ONNX格式的模型可以在这里执行
if save_onnx:
# 导出模型为 ONNX 格式
model.eval()
dummy_input = torch.randn(1, 3, 224, 224).to(device) # 用于推理的假输入(与训练时输入的大小一致)
torch.onnx.export(model, dummy_input, best_model_onnx_path,
export_params=True, opset_version=11,
do_constant_folding=True, input_names=['input'], output_names=['output'])
print(f"ONNX model saved at {best_model_onnx_path}")
print()
time_elapsed = time.time() - since
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
print(f'Best val Acc: {best_acc:4f}')
model.load_state_dict(torch.load(best_model_params_path, weights_only=True))
return model
# def visualize_model(model, num_images=6):
# was_training = model.training
# model.eval()
# images_so_far = 0
# fig = plt.figure()
#
# with torch.no_grad():
# for i, (inputs, labels) in enumerate(dataloaders['train']):
# inputs = inputs.to(device)
# labels = labels.to(device)
#
# outputs = model(inputs)
# _, preds = torch.max(outputs, 1)
#
# for j in range(inputs.size()[0]):
# images_so_far += 1
# ax = plt.subplot(num_images // 2, 2, images_so_far)
# ax.axis('off')
# ax.set_title(f'predicted: {class_names[preds[j]]}')
# plt.imshow(inputs.cpu().data[j])
#
# if images_so_far == num_images:
# model.train(mode=was_training)
# return
# model.train(mode=was_training)
if __name__ == '__main__':
model_ft = models.resnet18(weights='IMAGENET1K_V1')
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 2)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
# 指定保存模型的目录
model_save_dir = 'model' # 你可以修改为你希望保存的路径
# 训练模型并保存 ONNX 格式的模型
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=25,
model_save_dir=model_save_dir, save_onnx=True)
# visualize_model(model_ft)

Binary file not shown.