mirror of
https://github.com/Karllzy/cotton_color.git
synced 2025-11-09 03:03:53 +00:00
添加mask
This commit is contained in:
parent
ba15b49cc2
commit
948341941d
12
DPL/yolov5/mask.py
Normal file
12
DPL/yolov5/mask.py
Normal file
@ -0,0 +1,12 @@
|
||||
from model import Model
|
||||
|
||||
# 初始化 Model 对象,实例化时自动生成并保存掩膜
|
||||
model = Model(
|
||||
image_folder="runs/detect/exp6",
|
||||
label_folder="runs/detect/labels",
|
||||
output_folder="datasets/mask"
|
||||
)
|
||||
|
||||
# 读取某张图片对应的掩膜
|
||||
mask_array = model.get_mask_array("image1") # 替换 "image1" 为你的图片名
|
||||
print(mask_array)
|
||||
122
DPL/yolov5/model.py
Normal file
122
DPL/yolov5/model.py
Normal file
@ -0,0 +1,122 @@
|
||||
import os
|
||||
import cv2
|
||||
import numpy as np
|
||||
import time
|
||||
|
||||
class Model:
|
||||
def __init__(self, image_folder, label_folder, output_folder, width_blocks=24, height_blocks=24):
|
||||
"""
|
||||
初始化 Model 类,并自动生成并保存掩膜
|
||||
:param image_folder: 输入图像文件夹路径
|
||||
:param label_folder: YOLOv5标签文件夹路径
|
||||
:param output_folder: 输出掩膜矩阵保存文件夹路径
|
||||
:param width_blocks: 图像宽度分块数
|
||||
:param height_blocks: 图像高度分块数
|
||||
"""
|
||||
self.image_folder = image_folder
|
||||
self.label_folder = label_folder
|
||||
self.output_folder = output_folder
|
||||
self.width_blocks = width_blocks
|
||||
self.height_blocks = height_blocks
|
||||
|
||||
# 确保输出文件夹存在
|
||||
if not os.path.exists(self.output_folder):
|
||||
os.makedirs(self.output_folder)
|
||||
|
||||
# 自动处理并保存掩膜
|
||||
self._process_and_save_masks()
|
||||
|
||||
def _read_yolov5_labels(self):
|
||||
"""
|
||||
读取YOLOv5标签文件夹中的标签文件,提取每个框的位置。
|
||||
:return: 返回一个字典,格式为 {image_name: [(x_center, y_center, width, height), ...]}
|
||||
"""
|
||||
labels = {}
|
||||
for filename in os.listdir(self.label_folder):
|
||||
if filename.endswith('.txt'):
|
||||
image_name = filename.replace('.txt', '')
|
||||
file_path = os.path.join(self.label_folder, filename)
|
||||
|
||||
with open(file_path, 'r') as f:
|
||||
boxes = []
|
||||
for line in f:
|
||||
parts = line.strip().split()
|
||||
if len(parts) < 5:
|
||||
continue
|
||||
|
||||
x_center = float(parts[1])
|
||||
y_center = float(parts[2])
|
||||
width = float(parts[3])
|
||||
height = float(parts[4])
|
||||
boxes.append([x_center, y_center, width, height])
|
||||
labels[image_name] = boxes
|
||||
return labels
|
||||
|
||||
def _generate_mask(self, image_shape, boxes):
|
||||
"""
|
||||
根据检测框信息生成掩膜,返回True和False的矩阵
|
||||
:param image_shape: 图像的shape(height, width)
|
||||
:param boxes: 检测框信息,格式为 [(x_center, y_center, width, height), ...]
|
||||
:return: 掩膜矩阵
|
||||
"""
|
||||
height, width = image_shape
|
||||
mask = np.zeros((height, width), dtype=bool)
|
||||
|
||||
for box in boxes:
|
||||
x_center, y_center, width_box, height_box = box
|
||||
x1 = int((x_center - width_box / 2) * width)
|
||||
y1 = int((y_center - height_box / 2) * height)
|
||||
x2 = int((x_center + width_box / 2) * width)
|
||||
y2 = int((y_center + height_box / 2) * height)
|
||||
|
||||
x1 = max(0, x1)
|
||||
y1 = max(0, y1)
|
||||
x2 = min(width, x2)
|
||||
y2 = min(height, y2)
|
||||
|
||||
mask[y1:y2, x1:x2] = True
|
||||
|
||||
return mask
|
||||
|
||||
def _process_and_save_masks(self):
|
||||
"""
|
||||
处理图像文件夹,生成掩膜并保存为True和False的矩阵
|
||||
"""
|
||||
labels = self._read_yolov5_labels()
|
||||
|
||||
for filename in os.listdir(self.image_folder):
|
||||
if filename.endswith(('.jpg', '.png', '.bmp')):
|
||||
image_path = os.path.join(self.image_folder, filename)
|
||||
image_name = filename.split('.')[0]
|
||||
|
||||
boxes = labels.get(image_name, [])
|
||||
if not boxes:
|
||||
print(f"未找到检测框信息:{image_name}")
|
||||
continue
|
||||
|
||||
image = cv2.imread(image_path)
|
||||
if image is None:
|
||||
print(f"无法读取图片: {image_path}")
|
||||
continue
|
||||
|
||||
height, width = image.shape[:2]
|
||||
start_time = time.time()
|
||||
mask = self._generate_mask((height, width), boxes)
|
||||
processing_time = time.time() - start_time
|
||||
print(f"处理图片 {image_name} 耗时: {processing_time:.4f}秒")
|
||||
|
||||
mask_filename = f"{image_name}_mask.npy"
|
||||
mask_path = os.path.join(self.output_folder, mask_filename)
|
||||
np.save(mask_path, mask)
|
||||
print(f"保存掩膜: {mask_filename}")
|
||||
|
||||
def get_mask_array(self, image_name):
|
||||
"""
|
||||
返回指定图片的掩膜数组
|
||||
:param image_name: 图片名称(不带扩展名)
|
||||
:return: 掩膜数组
|
||||
"""
|
||||
mask_path = os.path.join(self.output_folder, f"{image_name}_mask.npy")
|
||||
if not os.path.exists(mask_path):
|
||||
raise FileNotFoundError(f"掩膜文件未找到: {mask_path}")
|
||||
return np.load(mask_path)
|
||||
Loading…
Reference in New Issue
Block a user